
Sample-based abstraction for hybrid relational MDPs

Sample-based abstraction for hybrid relational MDPs

Davide Nitti davide.nitti@cs.kuleuven.be
Department of Computer Science, KU Leuven, Belgium

Vaishak Belle vaishak.belle@cs.kuleuven.be
Department of Computer Science, KU Leuven, Belgium

Tinne De Laet tinne.delaet@kuleuven.be
Faculty of Engineering Science, KU Leuven, Belgium

Luc De Raedt luc.deraedt@cs.kuleuven.be

Department of Computer Science, KU Leuven, Belgium

Editor:

Abstract

We study planning in relational Markov Decision Processes involving discrete and contin-
uous states and actions. This combination of hybrid relational domains has so far not re-
ceived a lot of attention. While several symbolic approaches have been proposed for hybrid
and relational domains separately, they generally do not provide an integrated approach
and they often make restrictive assumptions to make exact inference possible. Remov-
ing those restrictions requires approximations such as Monte-Carlo methods. We propose
HyBrel: a sample-based planner for hybrid relational domains that combines model-based
approaches with state abstraction. HyBrel samples episodes and uses the previous episodes
as well as the model to approximate the Q-function. Abstraction is performed for each
sampled episode, this removes typical restrictions of symbolic approaches. In our empiri-
cal evaluations, HyBrel is shown to have a wide applicability, confirming the advantage of
sampled-based abstraction.

1. Introduction

Markov Decision Processes (MDPs) are the underlying framework for many approaches
for probabilistic planning and reinforcement learning. One important extension is that of
relational MDPs (Wiering and van Otterlo, 2012), in which state descriptions correspond to
conjunctions of facts representing a possible world, and for which symbolic methods can be
used to compute the value function exactly. The value function is represented compactly at
an abstract (lifted) level, as abstract states represent sets of specific ground states by means
of logical expressions. Another extension is a hybrid state-space, in which there are both
continuous and discrete variables. Under the assumption of deterministic state transitions,
it is possible to solve such hybrid MDPs exactly (Sanner et al., 2011). However, exact
solutions are intractable for more general problems, and one has to resort to approximated
methods. Despite the interest in hybrid domains and in relational MDPs, their combination
has received only little attention so far. In this paper we try to fill this gap. More specifically,
we study planning in hybrid relational MDPs, which allows to describe objects, attributes
(unary relations) as well as the relationships amongst them, and furthermore, the attributes
and relations are not necessary binary but can also be categorical or continuous. In this
paper we introduce the planner HybRel for hybrid relational MDPs. HybRel builds on the

1

Nitti, Belle, De Laet, and De Raedt

recent planner HYPE (Nitti et al., 2015). HYPE is a sample-based planner that exploits
importance sampling to estimate the Q-function. While HYPE can solve hybrid relational
MDPs by considering a grounding of the planning problem, it lacks the advantages of
abstraction when the model is available. The proposed HybRel adds an abstraction layer
to HYPE with a significant performance improvement. Abstraction is performed at the
level of samples, therefore it has a wider applicability than exact symbolic methods. Thus,
the contribution of this paper is to provide formal and empirical results of sample-based
abstraction by logical reasoning on the model.

2. Background

An MDP (Sutton and Barto, 1998) consists of a set S of states, a set A of actions the
agent can take, a state transition model p(st+1|st, at) and a reward function R(st, at), with
st ∈ S and at ∈ A. The goal of the agent is to maximize the expected (discounted) reward
E[
∑T

t=0 γ
tR(st, at)] = E[GT (E)], where γ ∈ [0, 1] is a discount factor, E is the state and ac-

tion sequence called episode E =<s0, a0, s1, a1, ..., sT , aT> and GT (E) =
∑T

t=0 γ
tR(st, at).

If T is finite we have a finite horizon MDP, otherwise an infinite horizon MDP. To max-
imize the expected reward, we want to find a policy πd(s) that assigns to each state
s and the remaining d steps (horizon) the action to perform. In this paper we con-
sider probabilistic policies πd(at|st) that provide for each state and horizon d a distri-
bution over actions. Since the total number of steps T = t + d, we omit the hori-
zon for the sake of clarity: π(at|st). The value function (or V -function) in a state st
with horizon d is defined as V π

d (st) = E[
∑d

k=0 γ
kR(st+k, at+k)|st, π] = E[Gd(Et)|st, π], with

Et =<st, at, ..., sT , aT> and Gd(Et) =
∑d

k=0 γ
kR(st+k, at+k). The action-value function (or

Q-function) in a state/action st, at with horizon d is defined as

Qπd (st, at)=E[
d∑

k=0

γkR(st+k, at+k)|st, at, π]=E[Gd(Et)|st, at, π]=

∫
Et

p(Et|st, at, π)Gd(Et)dEt,

where p(Et|st, at, π) = p(st+1:T , at+1:T |st, at, π) =
∏T−1
k=t π(ak+1|sk+1)p(sk+1|sk, ak). In this

paper, the state is hybrid relational, that is a set of ground relational atoms (true or false)
and pairs (variable, value) with a discrete or continuous range. The number of variables
in the state can grow or shrink over time and be countably infinite. Formal programming
languages such as BLOG (Milch et al., 2005a) and (Dynamic) Distributional Clauses (Nitti
et al., 2013; Gutmann et al., 2011) can be used to define proper distributions in such models.

A sample-based planner uses Monte-Carlo methods to solve an MDP. It samples episodes
Ei =<si0, a

i
0, s

i
1, a

i
1, ..., s

i
T , a

i
T>, using a policy π and updatesQd(s

i
t, a

i
t) according to a backup

rule, e.g., averaging the total rewards obtained starting from (sit, a
i
t). The policy is improved

using a strategy that trades-off exploitation and exploration, e.g., ε-greedy.

3. Algorithm

Our approach is sketched in Algorithm 1. HybRel is an extension of HYPE (Nitti et al.,
2015). The main contribution is the sample-based abstraction (line 10) and the computa-
tion of the Q-function from abstracted episodes (line 5). Superscripts i refer to a state,
action or expression in the i-th episode Ei, while Q̃ and Ṽ refer to an approximation of the

2

Sample-based abstraction for hybrid relational MDPs

Algorithm 1 HybRel

1: function sampleEpisode(d, snt , n) . Horizon d, starting state snt , index current episode n
2: if d = 0 then return 0
3: end if
4: for each applicable action a in snt do . Q-function estimation

5: Q̃nd (snt , a)←R(snt , a) +
∑

i<n w
iṼ i

d−1(ŝ
i
t+1)∑

i<n w
i

6: end for
7: ant ← policy({Q̃nd (snt , a)}) . action policy, e.g., ε-greedy
8: sample snt+1 ∼ p(st+1|snt , ant)
9: (ŝnt+1, v)← R(snt , a

n
t) + γSAMPLEEPISODE(d− 1, snt+1, n)

10: ŝnt ← REGRESS({R(snt , a
n
t) ∧ ŝnt+1}, {snt , ant , ŝnt+1}) . state abstraction

11: Ṽ nd (snt)← λv + (1− λ)maxaQ̃
n
d (snt , a)

12: store (ŝnt , Ṽ
n
d (snt), d)

13: return (ŝnt , Ṽ
n
d (snt))

14: end function

Q and V -function. Furthermore, ŝnt indicates an abstract state derived from the full state
snt . Briefly, in order to sample the n-th episode starting from s0 with a maximum depth d,
we estimate the Q-function for each applicable action1 using the previous sampled episodes
i < n (line 5). Then the action is selected using a given policy (e.g., ε-greedy), the next
state is sampled, and the planner is called recursively for the remaining steps. Afterwards,
the state is abstracted and stored together with its estimated V -function and the horizon.
The estimation of the V -function can be a combination of Monte-Carlo with dynamic pro-
gramming methods (line 11) resembling TD(λ) algorithms. Without abstraction (line 10)
the algorithm becomes HYPE. The weight in line 5 is defined as

wi =
p(ŝit+1|snt , a)

q(ŝit+1)
α(n−i), (1)

where ŝit+1 is the stored (abstracted) state from episode i, snt is the current (full) state, a
is the action we are trying to evaluate, q(ŝit+1) is the probability with which ŝit+1 has been

sampled, while α(n−i) is used to give more weight to more recent episodes, with 0� α ≤ 1.

Consider the following example without abstraction. We have an object that can be
pushed in a set of directions; the goal is to move the object close to a target point
g. The state consists of the object position (x, y), the reward function is R((x, y), a) =
100 if dist((x, y), g) < 0.1 (terminal state), −1 otherwise. The state transition model is
p(xt+1, yt+1|xt, yt, dx, dy) = N (xt+1, yt+1|xt + dx, yt + dx,Σ), where the action a = dx, dy
basically represents the displacement of the object to which Gaussian noise is added. Let us
assume we have sampled already some episodes with depth d = 10, and we want to sample
the n-th episode starting from sn0 =(0, 0). We start computing Q̃n10((0, 0), a) for each action
a (line 5). Thus, we compute the weights wi using (1) for each stored sample Ṽ i

9 (si1). For
example, Figure 1 shows the computation of Q̃n10((0, 0), a) for action a′ and a′′, where we
have 3 previous samples. A shadow represents the likelihood p(si1|sn0 , a) (left for a′ and right
for a′′). The weight (1) of each sample si1 is obtained by dividing this likelihood by q(si1)
(assuming for simplicity α = 1). If q(si1) is uniform, sample 2 with total reward 98 will
have higher weight than sample 1, while sample 3 will be largely ignored. The situation

1. If the action space is continuous, we can discretize the action space or sample from it.

3

Nitti, Belle, De Laet, and De Raedt

V 1
9 = 97

V 2
9 = 98 V 3

9 = 90

s = (0, 0)
a′ a′′

goal on(2,1) with reward 100, -1 otherwise

31
2

4
5

R = 100
G1

8 = 100

2 31 4
5

R = −1
G1

9 = 99

32
1

4
5

R = −1
G1

10 = 98
21
4

3
5

p(s′t+1|st, a)

Figure 1: Weight computation for a continuous domain (left), and for the blocksworld with
abstraction (right).

is reversed for a′′. Note that we can estimate Q̃nd (snt , a) using episodes that may never
encounter snt , a provided that p(sit+1|snt , a) > 0 for some stored episodes i.

4. Q-function estimation without abstraction

This section motivates the algorithm without abstraction (HYPE) as proposed by Nitti
et al. (2015). Let us consider the Monte-Carlo interpretation (λ=1) starting from standard
off-policy Monte-Carlo (Sutton and Barto, 1998) where the Q-function for a policy π and
horizon d is estimated from episodes generated from another policy by importance sampling:

Qπd (snt , a) = E[Gd(Et)|snt , a, π] = R(snt , a) + γ E[Gd−1(Et+1)|snt , a, π]

≈ R(snt , a) +
1∑

w(Eit+1)
γ
∑
i

w(Eit+1)Gd−1(Eit+1). (2)

The weight w(Et+1) = p(Et+1)
q(Et+1)

is the ratio of the target p(Et+1) = p(st+1:T , at+1:T |snt , a, π)

and the proposal distribution q(Et+1). Standard methods use q(Et+1)=p(st+1:T , at+1:T |snt , a, π′),
i.e., the episodes are generated with another policy π′ starting from snt , a. In contrast, to
evaluate Q at episode n, Nitti et al. (2015) uses all previously sampled episodes Eit+1

generated from s0 that do not necessarily pass by snt , a. Since the formula requires only
Eit+1, i.e., episode subsets from time t + 1, the proposal distribution is the marginal

q(Et+1) = p(st+1:T , at+1:T |s0, πi) = q(st+1)π
i(at+1|st+1)

∏T−1
k=t+1 π

i(ak+1|sk+1)p(sk+1|sk, ak),
where q(st+1) = p(st+1|s0, πi). At episode n, the weight w(Eit+1) in (2) for i < n becomes:

w(Eit+1) =
p(sit+1 | snt , a)π(ait+1 | sit+1)

∏T−1
k=t+1 π(aik+1 | sik+1)p(sik+1 | sik, aik)

q(sit+1)πi(ait+1 | sit+1)
∏T−1
k=t+1 π

i(aik+1 | sik+1)p(sik+1 | sik, aik)

=
p(sit+1 | snt , a)

q(sit+1)

∏T−1
k=t π(aik+1 | sik+1)∏T−1
k=t π

i(aik+1 | sik+1)
(3)

≈
p(sit+1|snt , a)

q(sit+1)
α(n−i) (4)

The policy ratio evaluation (left fraction of (3)) is hard to compute without an explicit
representation of the target policy, therefore Nitti et al. (2015) replaces2 the policy ratio with
α(n−i) obtaining (1). Ignoring abstraction, formula (2) with weights defined by (4) is used
in line 5, with λ = 1. Since we are performing policy improvement, each episode is sampled

2. This is similar to the standard recently-weighted average Sutton and Barto (1998).

4

Sample-based abstraction for hybrid relational MDPs

from a different policy. Shelton (2001) showed that samples from different distributions
can be considered as sampled from a single distribution that is the mixture of the true
distributions. Thus, during the sampling of episode n, for each previous episode i < n:
q(sit+1) = 1

n−1
∑

j<n p(s
i
t+1 | s0, πj). In general, q(sit+1) is not available in closed form; Nitti

et al. (2015) considered the following approximation, that we also use for abstracted states:

q(sit+1)=
1

n−1

n−1∑
j=1

p(sit+1|s0, πj)=
1

n−1

n−1∑
j=1

∫
st,at

p(sit+1|st, at)p(st, at|s0, πj)dst,at≈
1

n−1

n−1∑
j=1

p(sit+1|s
j
t , a

j
t).

5. Abstraction

By exploiting the (relational) model, we can improve the algorithm by using abstract states,
because often, only part of the state is relevant to determine the total reward. The idea
is to generalize the specific states into abstract states by removing the irrelevant facts (for
the outcome of the episode). This resembles symbolic methods to exactly solve MDPs
in propositional and relational domains (Wiering and van Otterlo, 2012). However, sym-
bolic methods are more challenging in hybrid relational MDPs, indeed exact inference is
intractable in general. To overcome these difficulties, we propose to perform abstraction at
the level of samples, as we will describe in the next section.

5.1 Derivation

In this section we formalize the sample-based abstraction. For an episode from time t
Et =<st, at, ..., sT , aT >, let us consider an arbitrary partition Et = {Êt, E′t} such that
Gd(Et) = Gd(Êt), i.e., the total reward depends only on Êt. The relevant part of the episode
has the form Êt =<ŝt, at, ..., ŝT , aT>, while E′t = Et\Êt =<s′t, ..., s

′
T> is the remaining non-

relevant part3. The partial episode Êt is called abstract because the irrelevant variables have
been marginalized, in contrast Et is called full or complete. At episode n, the Q-function
estimation from (full) state snt and action a can be reformulated as follows:

Qπd (snt , a) =

∫
Et

p(Et|snt , a, π)Gd(Et)dEt =

∫
Êt

(∫
E′t

p(Êt, E
′
t|snt , a, π)dE′t

)
Gd(Êt)dÊt =

=

∫
Êt

p(Êt|snt , a, π)Gd(Êt)dÊt = R(ŝnt , a) + γ

∫
Êt+1

p(Êt+1|snt , a, π)Gd−1(Êt+1)dÊt+1 =

= R(ŝnt , a) + γ

∫
Êt+1

p(Êt+1|snt , a, π)

q(Êt+1)︸ ︷︷ ︸
w(Êt+1)

q(Êt+1)Gd−1(Êt+1)dÊt+1

≈ R(ŝnt , a) +
1∑

i<n w(Êit+1)
γ
∑
i<n

w(Êit+1)Gd−1(Êit+1). (5)

We use importance sampling as in the non-abstract case, but this time the samples corre-
spond to the previous abstracted episodes Êit+1 for i < n. This formula is valid for any

partition such that Gd(Et) = Gd(Êt), but computing the weights w(Êt+1) for importance
sampling might be hard in general. Let us assume that the state transition model obeys
the Markov assumption on abstract states, i.e., p(ŝt+1 | s0:t, at) = p(ŝt+1|ŝt, at).

3. We assumed that the actions are relevant, otherwise they will belong to E′.

5

Nitti, Belle, De Laet, and De Raedt

To estimate Qπd (snt , a) (episode n), the weight for episode i < n becomes the following:

w(Êt+1) =
p(Êt+1|snt , a, π)

q(Êt+1)
=

∫
E′t+1

p(st+1:T , at+1:T |snt , a, π)dE′t+1∫
E′t+1

p(st+1:T , at+1:T |s0, a0, πi)dE′t+1

=
p(ŝt+1:T , at+1:T |snt , a, π)

p(ŝt+1:T , at+1:T |s0, a0, πi)

=
p(ŝt+1|snt , a)π(at+1 | ŝt+1, s

n
t , a)

∏T−1
k=t+1 π(ak+1|ŝt+1:k+1, s

n
t , a)p(ŝk+1|ŝk, ak)

q(ŝt+1)πi(at+1 | ŝt+1, s0, a0)
∏T−1
k=t+1 π

i(ak+1|ŝt+1:k+1, s0, a0)p(ŝk+1|ŝk, ak)

=
p(ŝt+1|snt , a)

q(ŝt+1)

∏T−1
k=t π(ak+1|ŝt+1:k+1, s

n
t , a)∏T−1

k=t π
i(ak+1|ŝt+1:k+1, s0, a0)

(6)

≈ p(ŝt+1|snt , a)

q(ŝt+1)

∏T−1
k=t π(ak+1|ŝt+1:k+1)∏T−1
k=t π

i(ak+1|ŝt+1:k+1)
(7)

≈ p(ŝt+1|snt , a)

q(ŝt+1)
α(n−i). (8)

Note that the proposal q(Êt+1) for a generic abstracted episode is the probability used to
sample such episode as in the non-abstracted case. However, this time we need to marginal-
ize the non-relevant variables: q(Êt+1) =

∫
E′t+1

q(Et+1)dE
′
t+1. After the marginalization of

E′t+1, the probabilities π, πi of choosing an action (policy) might depend also on the pre-
vious states. If we assume that the action probabilities do not depend on the initial state
we obtain (7). Since the policy is assumed to improve every episode, we replace the policy
ratio with a quantity that favours recent episodes as in the propositional case (formula (8)).
HybRel adopts formula (5) and weights (8) for Q-function estimation. Note that during
episode sampling the states are complete, nonetheless, to compute Qπd (snt , a) at episode n
all previous abstracted episodes i < n are considered. Finally, when the sampling of episode
n is terminated, it can be abstracted (line 10) and stored (line 12).

Before explaining HybRel abstraction in detail, let us consider an alternative solution
that samples abstract episodes directly, instead of sampling a complete episode and perform-
ing abstraction afterwards. For this purpose, note that formula (5) refers to the Q-function
at full state snt and action a, nonetheless, the assumption p(ŝt+1|s0:t, at) = p(ŝt+1|ŝt, at)
and approximation (7) make the weights, and thus the Q-function, dependent only on the
partial state: Qπd (snt , a) = Qπd (ŝnt , a). Therefore, if we are able to determine and sample par-
tial states ŝnt , we can sample abstract episodes directly and perform Q-function estimation.
Sampling the relevant partial episode Êt can be easily performed using lazy instantiation,
where given the query Gd(Et), relevant variables are sampled until the query is answered.
Lazy instantiation can exploit context-specific independencies and be extended for distri-
butions with a countably infinite number of variables, as in BLOG (Milch et al., 2005b,a).
Similarly, Distributional Clauses search relevant variables using backward reasoning, while
sampling is performed in a forward way. For example, to prove Rt the algorithm needs to
sample the variables ŝt relevant for Rt, ŝt depends on ŝt−1 and the action at−1, the action
depends on the admissible actions and the Q-function that again depend on ŝt−1, and so on.
At some point variables can be sampled because they depend on known facts (e.g., initial
state s0). This procedure guarantees that Gd(Et) = Gd(Êt), p(ŝt+1|s0:t, at) = p(ŝt+1|ŝt, at)
and π(a|st) = π(a|ŝt), thus (6) simplifies to w(Êt+1) = p(ŝt+1|ŝt,a)

q(ŝt+1)

∏T−1
k=t π(ak+1|ŝk+1)∏T−1
k=t π

i(ak+1|ŝk+1)
, and

the approximation of (7) is not needed. Unfortunately, this method avoids only sampling

6

Sample-based abstraction for hybrid relational MDPs

variables that are completely irrelevant, therefore in many practical domains it will sample
(almost) the entire state. For example, evaluating the admissible actions often requires
sampling the entire state.

5.2 Sample-based abstraction

In this section we describe the proposed sample-based abstraction. HybRel samples com-
plete episodes and performs abstraction afterwards. The abstraction of Êt from Et (line
10) is decomposed recursively employing backward reasoning (regression) from the last step
t = T and repeated backwards till reaching s0. We first regress R(sT , aT) using sT to
obtain the abstract state ŝT = ÊT (computing the most general ŝT such that R(ŝT , aT) =
R(sT , aT)). For t = T − 1, ..., 0 we regress R(st, at) ∧ ŝt+1 using at, st ∈ Et to obtain the
most general ŝt ⊆ st that guarantees R(ŝt, at) = R(st, at) and p(ŝt+1|st, at)=p(ŝt+1|ŝt, at).
Note that Êt = ŝt ∪ Êt+1. This method assumes that the actions are given, thus it
avoids to prove the admissible actions, keeping the abstract states smaller. For this rea-
son, REGRESS guarantees only Gd(Et) = Gd(Êt) and p(ŝt+1|ŝ0:t, at) = p(ŝt+1|ŝt, at), thus,
approximations (7) and (8) are needed to compute the weight. We argue that this is a
reasonable approximation, confirmed by empirical evaluation. Furthermore, each episode
is sampled using complete states, thus every applicable action is evaluated and even the
same action can produce episodes with different abstractions. Note that derivation (5)
assumes a fixed partition, thus exploits only conditional independencies, but the idea can
be extended to context-specific independencies. To illustrate the algorithm, consider the
blocksworld example in Fig. 1. In this domain we can move objects with no objects on
top, and the action succeeds with a certain probability or leaves the state unchanged.
Let us consider the abstraction of the episode on the left. To prove the last reward
we need to prove the goal, thus ŝ2 = on(2, 1)2. Now let us consider time step 1, the
proof for the immediate reward is not(on(2, 1)1), while the proof for the next abstract
state ŝ2 is on(1,table)1, on(2,table)1, clear(1)1, clear(2)1, therefore the abstract state be-
comes ŝ1 = on(1,table)1, on(2,table)1, clear(1)1, clear(2)1, not(on(2, 1)1). Analogously,
s′0 = on(1,2)0,on(2,table)0,clear(1)0,not(on(2,1)0). The same procedure is applicable to
continuous variables. The abstraction helps to exploit the previous episodes in more cases,
speeding up the convergence. For example, Fig. 1 shows the computation of a weight from
the state depicted on the right to the abstract state pointed by the arrow. If the action is
moving 4 on top of 5 we have p(ŝt+1|st, a) > 0⇒ w > 0, in contrast without abstraction all
actions get weight 0, thus that episode cannot be used to compute the Q-function.

6. Related work

As showed, this work is an extension of Nitti et al. (2015). Other notable sample-based
planners are UCT (Kocsis and Szepesvári, 2006) based on upper confidence bounds, and
Sparse Sampling (Kearns et al., 2002) that works with no particular assumptions. Those
and many other sample-based planners do not exploit the availability of the model (the
actual probabilities) and do not perform abstraction. Among sample-based planners for
probabilistic relational models there is PRADA (Lang and Toussaint, 2010), though it
supports only discrete action-state spaces. Several exact methods for propositional and
relational MDPs have been proposed. Symbolic methods that perform computation at the

7

Nitti, Belle, De Laet, and De Raedt

level of abstract states. This idea is used in propositional and relational domains. State-
of-the-art algorithms can solve MDPs exactly with discrete action-states in propositional
(see Mausam and Kolobov (2012) for a review) and relational MDPs (e.g., Kersting et al.
(2004)). There are also propositional solutions for hybrid domains (Zamani et al., 2012),
but they require a deterministic transition model to deal with the continuous variables.

7. Experiments

HYPE (Nitti et al., 2015) was tested in several domains, outperforming Sparse Sampling
(Kearns et al., 2002). In this section we empirically evaluates HybRel with respect to HYPE,
i.e., the effect of episode abstraction on performance. Dynamic Distributional Clauses were
adopted for modelling and inference, and the algorithm was implemented in YAP Prolog
and C++, and run on a Intel Core i7.

We performed experiments with the blocksworld (BW) and a continuous version of it
(BWC) with an energy level of the agent and object weights. The energy decreases with a
quantity proportional to the weight of the object moved plus Gaussian noise. If the energy
becomes zero the action fails, otherwise the probability of success is 0.9. The reward is −1
before reaching the goal and Energy if the goal is reached. For these experiments (Table 1,
setting A) we sampled a total of 200 episodes to find a policy and execute it. The results are
averaged over 100 runs. In addition, we repeated the experiments ignoring the horizon for
episodes that reach the goal (setting B in Table 1). In the current implementation abstrac-
tion is not supported with negation. Therefore, the domain has been propositionalized to
describe explicitly what is true and what is false. For HYPE (without abstraction) we show
time performance in the propositionalized domain and in the relational version between
brackets. The results highlight that abstraction improves the performance significantly.

Table 1: Experiments. d is the horizon, ‘success’ is the number of times the goal is reached.
For blocksworld with 4 objects (BW 4, BWC 4) we used a goal of 3 facts and a
goal of 4 facts when we use 6 objects (BW 6 and BWC 6).

Setting A
domain d abstract reward success time (s)
BW 4 10 NO 77.8 85% 175 (36)
BW 4 10 YES 83.3 91% 84
BW 6 16 NO -16 0% 596 (126)
BW 6 16 YES 57.9 71% 280

BWC 4 10 NO 3.8 79% 312 (44)
BWC 4 10 YES 5.4 95% 100
BWC 6 18 NO -18.0 0% 976 (170)
BWC 6 18 YES 1.3 98% 288

Setting B
domain d abstract reward success time (s)
BW 4 10 NO 90.9 97% 315 (75)
BW 4 10 YES 94.1 100% 262
BW 6 16 NO -13.9 2% 613 (128)
BW 6 16 YES 79.3 90% 750

BWC 4 10 NO 3.8 81% 319 (70)
BWC 4 10 YES 5.3 96% 316
BWC 6 18 NO -17.7 1% 985 (183)
BWC 6 18 YES 2.2 98% 1127

8. Conclusions

We proposed a sample-based planner for hybrid relational MDPs that extends the planner
HYPE. We formally described how (context-specific) independence assumptions can be ex-
ploited to perform abstraction. This is valid for propositional as well as relational domains.
In addition, empirical results showed that abstraction provides important improvements
with respect to HYPE.

8

Sample-based abstraction for hybrid relational MDPs

References

Bernd Gutmann, Ingo Thon, Angelika Kimmig, Maurice Bruynooghe, and Luc De Raedt.
The magic of logical inference in probabilistic programming. Theory and Practice of Logic
Programming, 2011.

Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A Sparse Sampling Algorithm for
Near-Optimal Planning in Large Markov Decision Processes. Machine Learning, 49(2-3):
193–208, 2002.

Kristian Kersting, Martijn Van Otterlo, and Luc De Raedt. Bellman goes relational. In
Proc. ICML, page 59, 2004.

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-carlo Planning. In Proc. ECML,
2006.

Tobias Lang and Marc Toussaint. Planning with Noisy Probabilistic Relational Rules.
Journal of Artificial Intelligence Research, 39:1–49, 2010.

Mausam and Andrey Kolobov. Planning with Markov Decision Processes: An AI Perspec-
tive. Morgan & Claypool Publishers, 2012.

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: Probabilistic Models with Unknown Objects. In Proc. IJCAI, 2005a.

Brian Milch, Bhaskara Marthi, David Sontag, Stuart Russell, Daniel L. Ong, and Andrey
Kolobov. Approximate Inference for Infinite Contingent Bayesian Networks. In Proc. of
the 10th International Workshop on Artificial Intelligence and Statistics, 2005b.

Davide Nitti, Tinne De Laet, and Luc De Raedt. A Particle Filter for Hybrid Relational
Domains. Proc. IROS, 2013.

Davide Nitti, Vaishak Belle, Tinne De Laet, and Luc De Raedt. Planning in discrete
and continuous markov decision processes by probabilistic programming. to appear in
ECML/PKDD, 2015.

Scott Sanner, Karina Valdivia Delgado, and Leliane Nunes de Barros. Symbolic Dynamic
Programming for Discrete and Continuous State MDPs. In Proc. UAI, pages 643–652,
2011.

Christian Robert Shelton. Importance Sampling for Reinforcement Learning with Multiple
Objectives. PhD thesis, MIT, 2001.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

M. Wiering and M. van Otterlo. Reinforcement Learning: State-of-the-Art. Adaptation,
Learning, and Optimization. Springer, 2012.

Zahra Zamani, Scott Sanner, and Cheng Fang. Symbolic Dynamic Programming for Con-
tinuous State and Action MDPs. In Proc. AAAI, 2012.

9

