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Abstract

We consider the problem of answering queries about formulas of first-order logic
based on background knowledge partially represented explicitly as other formulas,
and partially represented as examples independently drawn from a fixed probabil-
ity distribution. PAC semantics, introduced by Valiant, is one rigorous, general
proposal for learning to reason in formal languages: although weaker than classical
entailment, it allows for a powerful model theoretic framework for answering
queries while requiring minimal assumptions about the form of the distribution
in question. To date, however, the most significant limitation of that approach,
and more generally most machine learning approaches with robustness guarantees,
is that the logical language is ultimately essentially propositional, with finitely
many atoms. Indeed, the theoretical findings on the learning of relational theories
in such generality have been resoundingly negative. This is despite the fact that
first-order logic is widely argued to be most appropriate for representing human
knowledge. In this work, we present a new theoretical approach to robustly learning
to reason in first-order logic, and consider universally quantified clauses over a
countably infinite domain. Our results exploit symmetries exhibited by constants in
the language, and generalize the notion of implicit learnability to show how queries
can be computed against (implicitly) learned first-order background knowledge.

1 Introduction

The tension between deduction and induction is perhaps the most fundamental issue in areas such as
philosophy, cognition and artificial intelligence. The deduction camp concerns itself with questions
about the expressiveness of formal languages for capturing knowledge about the world, together with
proof systems for reasoning from such knowledge bases. The learning camp attempts to generalize
from examples about partial descriptions about the world. In an influential paper, Valiant [31]]
recognized that the challenge of learning should be integrated with deduction. In particular, he
proposed a semantics to capture the quality possessed by the output of (probably approximately
correct) PAC-learning algorithms when formulated in a logic. Although weaker than classical
entailment, it allows for a powerful model theoretic framework for answering queries.

From the standpoint of learning an expressive logical knowledge base and reasoning with it, most
PAC results are somewhat discouraging. For example, in agnostic learning [12]] where one does not
require examples (drawn from an arbitrary distribution) to be fully consistent with learned sentences,
efficient algorithms for learning conjunctions would yield an efficient algorithm for PAC-learning
DNF (also over arbitrary distributions), which current evidence suggests to be intractable [6]. Thus,
it is not surprising that when it comes to first-order logic (FOL), very little work tackles the problem
in a general manner. This is despite the fact that FOL is widely argued to be most appropriate for
representing human knowledge (e.g., [23} 126/ [18]]). For example, [4] consider the problem of the
learnability of description logics with equality constraints. While description logics are already
restricted fragments of FOL in only allowing unary and some binary predicates, it is shown that
such a fragment cannot be tractably learned, leading to the identification of syntactic restrictions for
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learning from positive examples alone. Analogously, when it comes to the learning of logic programs
[Sl], which in principle may admit infinitely many terms, syntactic restrictions are also typical [7].

In this work, we present new results on learning to reason in FOL knowledge bases. In particular, we
consider the problem of answering queries about FOL formulas based on background knowledge
partially represented explicitly as other formulas, and partially represented as examples independently
drawn from a fixed probability distribution. Our results are based on a surprising observation made in
[L1] about the advantages of eschewing the explicit construction of a hypothesis, leading to a paradigm
of implicit learnability. Not only does it enable a form of agnostic learning while circumventing
known barriers, it also avoids the design of an often restrictive and artificial choice for representing
hypotheses. (See, for example, [14], which is similar in spirit in allowing declarative background
knowledge but only permits constant-width clauses.) In particular, implicit learning allows such
learning from partially observed examples, which is commonplace when knowledge bases and/or
queries address entities and relations not observed in the data used for learning.

That work was limited to the propositional setting, however. Here, we develop a first-order logical
generalization. This requires us to generalize the notions of validity and entailment, and propose
new methods for recognizing true formulas under partial information, that capture what is implicitly
learned. Since reasoning in full FOL is undecidable we need to consider a fragment, but the fragment
we identify and are able to learn and reason with is expressive and powerful. Consider that standard
databases correspond to a maximally consistent and finite set of literals: every relevant atom is
known to be true and stored in the database, or known to be false, inferred by (say) negation as
failure. Our fragment corresponds to a consistent but infinite set of ground clauses, not necessarily
maximal. To achieve the generalization, we revisit the PAC semantics and exploit symmetries
exhibited by constants in the language. Moreover, the underlying language is general in the sense
that no restrictions are posed on clause length, predicate arity, and other similar technical devices
seen in PAC results. We hope the simplicity of the framework is appealing to the readers and hope
our results will renew interest in learnability for expressive languages with quantificational power.

We remark that our sole focus is in PAC-semantics approaches, but there are also other families of
methods for unifying statistical and logical representations, that fall under the banner of statistical
relational learning (SRL) (e.g., [13]). SRL includes widely used formalisms such as Markov Logic
Networks [28]] and frameworks such as Inductive Logic Programming [27]. Learning strategies for
SRL is an active area of research with numerous recent advances—for example, a family of recent
works have adapted the techniques for training neural networks into the Inductive Logic Programming
paradigm [3} 29} [8| 22]. Generally speaking, there are significant differences to PAC-semantics
approaches, such as in terms of the learning regime, the notion of correctness, and the underlying
algorithmic machinery. For example, Markov Logic Networks use approximate maximum-likelihood
learning strategies to capture the distribution of the data, whereas in PAC formulations, one considers
an arbitrary unknown distribution over the data and studies the question of what formulas are learnable
whilst costing for the number of examples needed to be sampled from that distribution. PAC-semantics
is distinguished in being able to provide guarantees of generalization performance and polynomial
time complexity with the minimal assumption of i.i.d. training examples. Of course, there is much
to be gained by attempting to integrate these communities; see, for example, [5]. These differences
notwithstanding, the learning of logical theories is usually restricted to finite-domain first-order logic,
and so it is essentially propositional, and in that regard, our setting is significantly more challenging.

2 Logical Framework

Language: We let £ be a first-order language with equality and relational symbols
{P(z),...,Q(x1,...,xk),...}, variables {x, y, z, . . .}, and a countably infinite set of rigid designa-
fors or names, say, the set of natural numbers N, serving as the domain of discourse for quantification.
Well-defined formulas are constructed using logical connectives {—, V,V, A, 3, D}, as usual. (D
denotes implication.) Together with equality, names essentially realize an infinitary version of the
unique-name assumption

'Our language £ is essentially equivalent to standard FOL together with a unique-name assumption for
infinitely many constants [17, Definition 3].
In general, the unique-name assumption does not rule out capturing uncertainty about the identity of objects;
see 91130, for example.



The set of (ground) atoms is obtained asf] ATOMS = {P(ay, ..., a;) | P is a predicate, a; € N} .
We sometimes refer to elements of ATOMS as propositions, and ground formulas as propositional
formulas. We will use p, g, e to denote atoms, and «, 3, ¢, 1) to denote ground formulas.

Semantics: A £-model M is a {0, 1} assignment to the elements of ATOMS. Using |= to denote
satisfaction, the semantics for ¢ € L is defined as usual inductively, but with equality as identity:
M |= (a =) iff a and b are the same names, and quantification understood substitutionally over all
names in N: M = Vz¢(x) iff M |= ¢(a) for all a € N. We say that ¢ is valid iff for every £-model
M, M |= ¢. Let the set of all models be M.

Representation: Like in standard FOL, reasoning over the full fragment of £ is undecidable.
Interestingly, owing to a fixed, albeit countably infinite, domain of discourse, the compactness
property that holds for classical first-order logic does not hold in general [17]. For example,
{3zP(z),~P(1),~P(2),...} is an unsatisfiable theory for which every finite subset is indeed
satisfiable. However, as identified in [1]], and earlier in [[15], the case of disjunctive knowledge is
more manageable. In particular, we will be interested in learning and reasoning with incomplete
knowledge bases with disjunctive information [[1]:

Definition 1: An acceptable equality is of the form = a, where x is any variable and a any name.
Let e range over formulas built from acceptable equalities and connectives {—, V, A}. Let ¢ range
over quantifier-free disjunctions of (possibly non-ground) atoms. Let V¢ mean the universal closure
of ¢, i.e., with a universal quantifier on each free variable of ¢. A formula of the form V(e D ¢) is
called a V-clause. A knowledge base (KB) A is proper™ if it is a finite non-empty set of V-clauses.
The rank of A is the maximum number of variables mentioned in any V-clause in A.

This fragment is very expressive. Consider that standard databases correspond to a maximally
consistent and finite set of literals, in the sense that every relevant atom is known to be true and stored
in the database, or known to be false, inferred by (say) negation as failure. In contrast, propert KBs
correspond to a consistent but infinite set of ground clauses, not necessarily maximal in this way. We
also note that [19] shows how to represent a certain family of “local” action models for planning
within the fragment of proper™ we consider, for which polynomial-time reasoning is possible.

Grounding: A ground theory is obtained from A by substituting variables with names. Suppose 6
denotes a substitution. We denote the result of applying 6 to a formula ¢ by ¢6. For any set of names
C C N, we write § € C' to mean substitutions are only allowed wrt the names in C. Formally, we
define:

o GND(A) ={c# |V(e Dc) € A,0 € Nand [= eb};

e Forz > 0, GND(A,z) ={ch | V(e D c) € A, [=eb,0 € Z}, where Z is the set of names
mentioned in A plus z (arbitrary) new ones;

e For C C N, GND(A,C) = {cf | V(e D ¢) € A, = €6,0 € Z} where Z is the set of
names mentioned in A plus the names in C;

e GND™ (A) = GND(A, z) where z is the rank of A.

Reasoning: Unfortunately, arbitrary reasoning with such KBs is also undecidable [15, Theorem
7]. Various proposals have appeared to consider that problem: in [15], for example, a sound but
incomplete evaluation-based semantics is studied. In [[1]], it is instead shown that when the query is
limited to ground formulas, we can reduce first-order entailment to propositional satisfiability:

Theorem 2: [I] Suppose A is a propert KB, and « is a ground formula. Then, A | o iff
GND™ (A A —a) is unsatisfiable.

Here, the RHS of the iff is a propositional formula, obtained by a finite grounding, as defined above.

Example 3: Suppose A = {Vz(Grad(x) V Prof(x)),Vz(x # charles O Grad(x))} and the query
is Grad(logan). The query can be seen to be entailed. Given that the KB’s rank is 1, consider the
grounding of the KB and the negated query wrt {charles, logan, jean} (here jean is chosen arbitrarily).
It is indeed unsatisfiable.

It is worth noting that the proof here (and in other proposals with £-like languages [18 15} 21]]) is
established by setting up a bijection between names to show that all names other than those that

?Because equality is treated separately, atoms and clauses do not include equalities.



appear in the finite grounding in the RHS behave “identically,” and so for entailment purposes, it
suffices to consider a finite set consisting of the constants already mentioned and a few extra ones.
That idea can be traced back to [17] (reformulated here for our purposes):

Theorem 4: [[[7)] Suppose o = V() is a V-clause. (Its rank is 1.) Let C be the names mentioned
in GND(a, 1). Then for every a € N, there is a b € C such that |= ¢(a) iff = ¢(b).

The essence of Theorem [2]is to exploit this idea to show (reformulated here for our purposes):
Lemma 5: [[I]] Suppose « is as above. If GND(«, 1) is satisfiable, then so is GND(«, z) for z > 1.

Thus, because Theorem [ establishes that GND(«, 1) is satisfiable if and only if « is in the countably
infinite domain, and Lemmaestablishes that the introduction of extra names in GND(«, z) preserves
satisfiability, we obtain satisfiability under the larger, common subset of names used in GND ™. These
observations will now lead to an appealing account for implicit learnability with proper™ KBs.

3 Generalizing PAC-Semantics

We now recall the semantics we use, PAC semantics as introduced by Valiant [31]. PAC semantics
was formulated to capture the quality possessed by the output of PAC-learning algorithms, when
viewed as formulas in a logic. Because inductive generalization cannot be captured by deduction,
it inherently requires we admit the possibility of an incorrect generalization. Thus, as compared to
classical (Tarskian) semantics, the PAC semantics is necessarily weaker. In the classical propositional
formulation, we suppose a propositional language with (say) n propositions, yielding a model theoretic
space {0, 1}™. We suppose that we observe examples independently drawn from a distribution D over
{0, 1}™. Then, suppose further that these examples enable a learning algorithm to find a formula ¢.
We cannot expect this formula to be valid in the traditional sense, as PAC-learning does not guarantee
that the rule holds for every possible binding, only that ¢ so produced agrees with probability 1 — €
wrt future examples drawn from the same distribution. This motivates a weaker notion of validity:

Definition 6: Given a distribution D over {0, 1}", we say that a Boolean function F' is (1 — €)-valid
if Procp[F(x) =1] > 1 —e If e = 0, we say F is perfectly valid.

Thus far, the PAC semantics and its application to the formalization of robust logic-based learning has
been limited to the propositional setting [31, 24} [11], that is, where the learning vocabulary is finitel
many atoms, and the background knowledge is essentially restricted to a propositional formulaé
Generalizing that to the FOL case has to address, among other things, what (1 — ¢)-validity means,
how FOL formulas could be learned by algorithms, and finally, how entailments can be computed.
That is precisely our goal for this paper.

We start by proposing an extension of the PAC semantics for the infinitary structures (generalizing
assignments) constructed for £, namely M. For this, we will need to consider distributions on M,
which are defined as usual [2]: we take M to be the sample space (of elementary events), define a
o-algebra M to be a set of subsets of M, which represent a collection of (not necessarily elementary)
events, and a function Pr: M — [0, 1], which is the probability measure.

We are now ready to define (1 — €)-validity as needed in the PAC semantics.

Definition 7:  Given a distribution Pr over M, we say a formula ¢ € L is (1 — €)-valid iff
Pr([¢]) > 1 — e. If e = 0, then we say that ¢ is perfectly valid. Here, [¢] for any closed formula
¢ € L denotes the set {M € M | M |= ¢}.

In practice, the most important use of the notion of validity is to check the entailment of a formula
from a knowledge base, and by extension, the reader may wonder how that carries over from classical
validity. As also observed in [[L1] (for the propositional case), the union bound allows classical
reasoning to have a natural analogue in the PAC semantics, shown below. Note that, as already
mentioned, our assumption henceforth is that knowledge bases are proper™, and queries are ground
formulas, both in the context of reasoning as well as learning.

3Valiant [31]] uses a fragment of FOL for which propositionalization is guaranteed to yield a small proposi-
tional formula, and only considers such a reduction to the propositional case.



Proposition 8: Ler i1, . ..,y be V-clauses such that each v; is (1 — €;)-valid under a common
distribution D for some €; € [0, 1]. Suppose {1, ...,¥r} = @, for some ground formula . Then ¢
is (1 — €')-valid under D for e’ =", €.

4 Partial Observability

The learning problem of interest here is to obtain knowledge about the distribution D, which, of
course, is not revealed directly, but in the form of a set of examples. The examples in question
are models independently drawn from D, and we are then interested in knowing whether a query
a is (1 — €)-valid. Intuitively, background knowledge A may be provided additionally and so the
examples correspond to additional knowledge that the agent learns. This additional knowledge is
never materialized in the form of £-formulas, but is left implicit, as postulated first in [11]].

When it comes to the examples themselves, however, we certainly cannot expect the examples to
reveal the full nature of the world, and indeed, partial descriptions are commonplace in almost all
applications [25]]. In the case of £, moreover, providing a full description may even be impossible in
finite time. All of this motivates the following:

Definition 9: A partial model N maps ATOMS to {1,0, x} . We say N is consistent with a £-model
M iff for all p € ATOMS, if N[p] # * then N[p] = M|p]. Let N be the set of all partial models.

Essentially, our knowledge of D will be obtained from a set of partial models that are the examples.

Definition 10: A mask is a function 6 that maps £-models to partial models, with the property that
forany M € M, (M) is consistent with M, and only a finite number of atoms are mapped to {0, 1}.
A masking process © is a mask-valued random variable (i.e., a random function). We denote the
distribution over partial models obtained by applying a masking process © to a distribution D over
L-models by O(D)f]

The definition of masking processes allows the hiding of entries to depend on the underlying example
from D. Moreover, as discussed in [[L1] (for the propositional case), reasoning in PAC-Semantics
from complete examples is trivial, whereas the hiding of all entries by a masking process means
that the problem reduces to classical entailment. So, we expect examples to be of a sort that is in
between these extremes. In particular, for the sake of tractable learning, we must consider formulas
that can be evaluated efficiently from the partial models with high probability. This leads to a notion
of witnessing.

Definition 11: We define a propositional formula ¢ € £ to be witnessed to evaluate to true or false
in a partial assignment /N by induction as follows:

e an atom (€) is witnessed to be true/false iff it is true/false respectively in V;

e —¢ is witnessed true/false iff ¢ is witnessed false/true respectively;

e ¢V 1 is witnessed true iff either ¢ or v is, and it is witnessed false iff both ¢ and v are
witnessed false;

e ¢ A1 is witnessed true iff both ¢ and ¢ are witnessed true, and it is witnessed false iff either
¢ or 9 is witnessed false;

e ¢ D 1 is witnessed true iff either ¢ is witnessed false or v is witnessed true, and it is
witnessed false iff both ¢ is witnessed true and 1 is witnessed false.

We define a V-clause VZ¢(Z) to be witnessed true in a partial model N for the set of names C'if for
every binding of Z to names ¢ € C, the resulting ground clause ¢(¢) is witnessed true in V.

It is the witnessing of V-clauses that, in essence, enables the implicit learning of quantified generaliza-
tions. Let us see how that works. Intuitively, from examples ¢(¢1), . . ., one would like to generalize
to VZ¢(Z), the latter being a statement about infinitely many objects. But what criteria would justify
this generalization, outside of (say) witnessing infinitely many instances? Our result shows that,
surprisingly, it suffices to get finitely many examples, so as to witness ¢(¢), . .., ¢(Cx) and yield

“Note that since we assume that the resulting partial models are finite and thus countable, as long as the
masking processes are measurable functions w.r.t. the joint probability measure, every event defined in terms of
the partial models is a countable union of measurable events, and thus measurable.



universally quantified sentences with high probability. This is possible because, via Theorem [2] all
the names not mentioned in the KB and the query behave identically. Thus, provided we witness the
grounding of ¢ for a sufficient but finite set of constants, we can treat the implicit KB as including
V-clauses, as it yields the same judgments on our queries.

Putting it all together, formally, in any given learning epoch, let S be the class of queries we are
interested in asking: that is, S is any finite set of ground formulas. Let C' then be all the names
mentioned in S, the KB, and z extra new ones chosen arbitrarily, where z is at least the rank of the
KB. If z = KB’s rank, then the rank of the implicit KB matches that of the explicit KB; otherwise, it
would be higher. So the definition says that the witnessing of VZ¢(Z) happens when ¢(¢) is witnessed
for all ¢ € C'. We think this notion is particularly powerful, as it neither makes references to bindings
from the full set of names N (which is infinite), nor to not observing negative instances. Note also
that witnessing does not require observing all atoms: a clause is witnessed to evaluate to true if some
literal appearing in it is true in the partial model. Thus, the V-clause witnessed may involve predicates
not explicitly appearing in the partial model.

Example 12: Let A be the KB
{Vx # logan D> Mutant(z),Vx # y D [Mutant(x) A Teammate(x,y) D Mutant(y)|}.

Then the V-clause Vx # logan D [Mutant(x) D Teammate(x, logan)] is witnessed for a suitable set
of names w.r.t. A (with rank two) in any example that mentions at least two other names (in addition
to logan) for which the substitution into Mutant(x) D Teammate(x, logan) is satisfied in the partial
model. For instance, we may have the partial model { Teammate(scott,logan), Teammate(jean,logan)},
or the partial model {Teammate(ororo,logan), Teammate(kurt,logan)}.

Witnessed formulas correspond to the implicit KB. In order to capture the inferences that the implicit
KB permits, we will use partial models to simplify complex formulas in the KB or query. To that end,
we define:

Definition 13: Given a partial model /N and a propositional formula ¢, the restriction of ¢ under
N, denoted ¢|n, is recursively defined: if ¢ is an atom witnessed in N, then ¢| is the value that ¢
is witnessed to evaluate to under N; if ¢ is an atom not set by N, then ¢|y = ¢; if ¢ = -1, then
¢|lv = ~(¢|n); and if ¢ = a A S, then ¢|ny = (a|n) A (B|n). (And analogously for Boolean
connectives V and D .) For a partial model N and set of propositional formulas F’, we let F'| ; denote
the set {¢|n : ¢ € F'}.

Notice that here we do not define restrictions for quantified formulas, such as those appearning in the
KB: while that is possible it is not needed, as we will be leveraging Theorem [2] for reasoning.

Example 14: Consider GND™ (A) for the KB A of Example using the set of names
{scott,jean,logan}. Then the restriction of the grounding of our second rule under the partial model
{Teammate(scott,logan), Teammate(jean,logan), Teammate(scott,jean)} is
Mutant(scott) O Mutant(logan), [Mutant(logan) N\ Teammate(logan,scott) D Mutant(scott)),
Mutant(jean) D Mutant(logan), [Mutant(logan) N\ Teammate(logan,jean) D> Mutant(jean)),
Mutant(scott) O Mutant(jean), [Mutant(jean) N\ Teammate(jean,scott) O Mutant(scott)].
Had the partial model also included Teammate(logan,scott), Teammate(logan,jean), and
Teammate(scott,jean) we would have had the further simpler collection
Mutant(scott) O Mutant(logan), Mutant(logan) O Mutant(scott),
Mutant(jean) D Mutant(logan), Mutant(logan) O Mutant(jean),
Mutant(scott) O Mutant(jean), Mutant(jean) D Mutant(scott).

S Implicit Learnability

The central motivation here is learning to reason in FOL, and as argued earlier, implicit learning
circumvents the need for an explicit hypothesis, especially since hypothesis fitting is intractable,
unless one severly restricts the hypothesis space. So, learning is integrated tightly into the application



using the knowledge extracted from data. Our definitions in the previous sections establish the
grounds for which a first-order implict KB can be learned from finitely many finite-size examples,
but also the grounds for deciding propositional entailments of V-clauses specified explicitly —i.e., the
background knowledge. (Of course, reasoning is not yet tractable, but simply decidable; we return
to this point later). Overall, the learning regime is presented in Algorithm[I] and its correctness is
justified in Theorem T3]

Algorithm 1 Reasoning with implicit learning

Input: Partial models NV, N(?) N (m) explicit KB A, query « (a ground formula), number
of names k at least equal to A’s rank
Output: p € [0, 1] estimating « is p-valid (See Theorem
Initialize v < 0
fori:=1,...,mdo
for all k-tuples of names (cy, ..., cx) from N not appearing in A A -« do
if GND(A A —a, {c1, ..., ¢k })|no is unsatisfiable then
Increment v and skip to the next i.
end if
end for
end for
Return v/m

Theorem 15: Let §,~v € (0,1) and k € N be given. Suppose we have m partial models drawn i.i.d.
from a common distribution D masked by a masking process ©, where m > 2—#2 In %. (Here, In

denotes the natural logarithm.) With probability at least 1 — 6, Algorithm[I|returns a value p s.t.
I if A D «ais at most p-valid, p < p+
II if there is a KB T such that

1. ANT = o
2. the rank of A N T is at most k, and

3. with probability at least p over partial models N € O (D), there exists names c1, . . . ,
not appearing in A or «, such that every formula in T is witnessed true in N for
C1,. .., Cy together with the names appearing in A and o

thenp > p— 1.

Proof: Partl:p < p+ v if A D «is at most p-valid. We first note that when GND(A A
—a, O)|y = L for any set of names C, since N(?) is consistent with the actual model M (¥) that
produced it, GND(A A =, C')|pr) = L as well. Thus, in this case, GND(A A -, C) is falsified
by M. Since |C| is at least the rank of A, it is easy to see that GND(A A —«), which is logically
equivalent to A A —a, is falsifiable at M (), So, it must be that the negation of that theory (i.e.,
A D o) is satisfied at M)

Now, A D a is by definition p-valid with respect to this distribution on M () if the probability that
A D « s satisfied by each M () is p. Moreover, it follows immediately from Hoeffding’s inequality
that for m > 2—,12 In %, the probability that the fraction of times A O « is satisfied by M (%) (out of
m) exceeds p by more than +y is at most § /2. Thus, p, which is at most the fraction of times A D « is
actually satisfied by M (), likewise is at most p + ~ with probability at least 1 — § /2.

Part II: rate of witnessing an implicit KB lower bounds p. Note that by the grounding trick
(Theorem , A AT E « implies that for any set of names ¢y, . .., ¢ not appearing in A or «,
GND(AAZAa,{c1,...,c,}) E L. Suppose that 7 is witnessed true for ¢y, . . . , ¢ together with the
names in A and o in N (), We note that in the restricted formula GND(AAZA=a, {c1, ..., ¢k }) | v,
the groundings of formulas in Z all simplify to 1 (true), and so GND(AAZA—a, {¢1, ..., ek )|y =
GND(AA=a, {c1, ..., cx})|a. Thus, GND(AA-a, {c1, ..., ek })|neo E L, sovis incremented
on this iteration. Thus, indeed, p = v/m is at least the fraction of times out of m that Z is witnessed
true for some set of k£ names. It again follows from Hoeffding’s inequality that for m > # In %, this

is at least p — - with probability 1 — §/2.



By a union bound, the two parts hold simultaneously with probability at least 1 — ¢, as needed. il

In essence, the no-overestimation condition is a soundness guarantee and the no-underestimation
condition is a limited completeness guarantee: in other words, if the query logically follows from the
explicit KB and examples then the algorithm returns success with an appropriate p, and vice versa.
Note that the number of examples m needed (to answer a single query) depends only on the desired
accuracy «y and confidence §. It is independent of the size of the KB, the number of predicates, etc.

Example 16: Continuing Examples|I2]and [14] we noted that the V-clause
Va # logan O [Mutant(x) D Teammate(x,logan))

was witnessed w.r.t. A for partial models such as {Teammate(scott,logan), Teammate(jean,logan)}
or {Teammate(ororo,logan), Teammate(kurt,logan)}. This formula could serve as an implicit
KB if ©(D) produces such examples; it completes a proof of Mutant(logan) by first inferring
Mutant(x) for some x # logan from the first rule of A, using this implicit KB formula to infer
Teammate(x,logan), and finally using the second rule of A to infer Mutant(logan). In these partial
models, respectively, the restricted grounding of A correspondingly produces Mutant(scott) and
Mutant(scott) O Mutant(logan), or Mutant(ororo) and Mutant(ororo) O Mutant(logan), which in
each case allows us to prove the query Mutant(logan), via a different individual depending on the
names mentioned in the partial example. Observe that A does not allow us to infer that the Teammate
relation holds for any individuals, whereas the data alone, which only gives positive examples of
the Teammate relation, is not adequate to infer the Murant relation. We need both to establish
Mutant(logan).

6 Tractable Reasoning

Algorithm [T reduces reasoning with implicit learning to deciding entailment. In order to obtain a
tractable algorithm, we generally need to restrict the reasoning task somehow. One approach, taken in
the previous work on propositional implicit learning [[1 1], is to “promise” that the query is provable in
some low-complexity fragment; for example, it is provable by a small treelike resolution proof (where
“small” refers to the number of lines of the proof). Equivalently, we give up on completeness, and
only seek completeness with respect to conclusions provable in low complexity in a given fragment.
In general, then, one obtains a running time guarantee that is parameterized by the size of the proof
of the query. We can take a similar approach here, by using an algorithm for deciding entailment that
is efficient when parameterized in such terms. In general, what is needed is a fragment for which
we can decide the existence of proofs efficiently, and that is “restriction-closed,” meaning that for
any partial model N, if we consider the restriction of each line of the proof, we obtain a proof in the
same fragment. Most fragments we might consider, including specifically treelike or bounded-width
resolution, are restriction-closed. (See [10] for details.)

We will motivate an entirely new strategy here, which offers a semantic perspective to the proof-
theoretic view in [[L1]. One classically sound model-theoretic approach to constraining propositional
reasoning is to limit the power of the reasoner, as represented, for example, by the work on tautological
entailment [16]. More recently, [20] suggest a simple evaluation scheme for proper™ KBs that
gradually increases the power of the reasoner: level 0 is standard database lookup together with unit
propagation, level 1 allows for one case split in a clause, level 2 allows two case splits, and so on. The
formal intuition is as follows: suppose s is a set of ground clauses and ¢ is a ground query, and let us
say its a clause for simplicity. Let U (s) denote the the closure of s under unit propagation, defined as
the least set s’ satisfying: (a) s C s’ and (b) if literal [ € s’ and (-l V ¢) € ¢’ then ¢ € s’. Then let
V(s) define all possible weakenings: {c | ¢ is a ground clause and there is a ¢’ € U(s) s.t. ¢ C c}.
Then we define s =, ¢ (read: “entails at levels z") iff one of the following holds:

o subsume: z =0, and ¢ € V(s);
e split: z > 0 and there is some clause ¢ € s such that for all literals [ € ¢, s U {l} [F(.—1) ¢.

For small values of z, entailment at level z is tractable to decide as well as sound:

Theorem 17: [20] Suppose A, ¢ are propositional formulas and z € N. Then, determining if
A |=. ¢ can be done in time O((|¢]|A])*™). Moreover, if A \=, ¢ then A |= ¢.



We will now see how to leverage these results. First, however, we need the equivalent to restriction-
closed, as discussed above.

Proposition 18: Suppose ¢, A, z are as above. Then if A =, ¢, and N is any partial model then

(Aln) = (4ln)-

Basically, if ¢ is entailed at level z from A, then any restriction of ¢ under N must also be entailed by
A restricted to IV, at least at level z if not lower. Notice that restricting a ground formula is equivalent
(w.r.t. satisfiability) to simply conjoining the literals true at N with that formula, from which the
proof follows. Now, recall from Theorem given a proper™ KB A and ground query ¢, we have
A E ¢ iff GND™ (A A —a) is unsatisfiable. Here, since « is already ground, we really only need
to make sure that A is ground wrt all the names in A A =« and k new ones, k being the rank of A.
So let GND®(A) denote precisely such a grounding of A. It then follows that GND“(A) | « iff
A E «. It is easy to show that the same holds for |=, as well [20]. So let Algorithm 1’ be exactly
like Algorithm 1 except that it takes an additional parameter z (for limited reasoning) and replaces
the following check:

GND(A A —a,{c1y ..., ¢k })| v is unsatisfiable with

GND(A,{c1,...,Chydr, .. dm}) v Ez (ne), where {d1,...,dp} is the set of
names appearing in « but not in A.

Theorem 19: Ler 6,y € (0,1), k € N, m > # In %, and let z € N. Then with a probability at

least 1 — 6, Algorithm 1’ returns a value p such that: (I) and (IN) is as in Theorem|l 5| except for (I1.1)
which states that A N T =, «. The algorithm runs in time O((|a||GND*(A)[)*T*m).

Discussion. Interestingly, in [21]], it is shown that reasoning is also tractable in the first-order case if
the knowledge base and the query both use a bounded number of variables. This would then mean
that we would no longer be limited to ground queries and can handle queries with quantifiers. This
direction is left for future research. Nonetheless, we note that deciding quantified (as opposed to
ground) queries appears to demand more from learning. In general, in an infinite domain, we cannot
hope to observe in a finite partial model that universally quantified formulas are ever true. Thus,
we anticipate that extensions that handle queries with quantifiers will need a substantially different
framework, presumably with stronger assumptions. One possible framework takes a more credulous
approach to the learning problem (in contrast to our skeptical approach based on witnessing truth):
we suppose that when a formula is frequently false on the distribution of examples, we also frequently
obtain a partial model that witnesses the formula false—e.g., a partial model in which a binding of a
candidate V-clause falsifies it. This is undoubtedly an assumption about the benevolent nature of the
environment, captured as the notion of concealment in [25], but it does make learning conceptually
simpler. In this framework, one permits all conclusions that are not explicitly falsified. Whether such
an idea can be used for inductive generalization of FOL formulas over arbitrary distributions remains
to be seen.

7 Conclusions

In this work, we presented new results on the problem of answering queries about formulas of first-
order logic (FOL) based on background knowledge partially represented explicitly as other formulas,
and partially represented as examples independently drawn from a fixed probability distribution.
By appealing to the paradigm of implicit learnability, we sidestepped many major negative results,
leading to a learning regime that works with a general and expressive FOL fragment. No restrictions
were posed on clause length, predicate arity, and other similar technical devices seen in PAC results.
Overall, we hope the simplicity of the framework is appealing to the readers and hope our results will
renew interest in learnability for expressive languages with quantificational power.
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