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Abstract Moral responsibility is a major concern in autonomous systems, with ap-
plications ranging from self-driving cars to kidney exchanges. Although there have
been recent attempts to formalise responsibility and blame, among similar notions,
the problem of learning within these formalisms has been unaddressed. From the
viewpoint of such systems, the urgent questions are: (a) How can models of moral
scenarios and blameworthiness be extracted and learnt automatically from data? (b)
How can judgements be computed effectively and efficiently, given the split-second
decision points faced by some systems? By building on constrained tractable proba-
bilistic learning, we propose and implement a hybrid (between data-driven and rule-
based methods) learning framework for inducing models of such scenarios automat-
ically from data and reasoning tractably from them. We report on experiments that
compare our system with human judgement in three illustrative domains: lung cancer
staging, teamwork management, and trolley problems.

1 Introduction

Moral responsibility is a major concern in autonomous systems. In applications rang-
ing from self-driving cars to kidney exchanges [1], contextualising and enabling
judgements of morality and blame is becoming a difficult challenge, owing in part
to the philosophically vexing nature of these notions. In the infamous trolley problem
[2], for example, a putative agent encounters a runaway trolley headed towards five
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individuals who are unable to escape the trolley’s path. Their death is certain if the
trolley were to collide with them. The agent, however, can save them by diverting
the trolley to a side track by means of a switch, but at the cost of the death of an-
other individual, who happens to be on this latter track. While one would hope that in
practice the situations encountered by, say, self-driving cars would not involve such
extreme choices (many of which may already be covered under the law or other reg-
ulations [3]), in our view it is crucial that AI systems act in line with human values
and preferences. Imbuing such systems with the ability to reason about moral value,
blame, and intentionality is one possible step towards this goal.

Moral reasoning has been actively studied by philosophers, lawyers, and psy-
chologists for many decades. Within the context of interactions between humans and
autonomous systems, the notion of blameworthiness has been argued as being criti-
cal to effective collaboration, decision-making, and to our thoughts about morality in
general [4,5]. In many frameworks, especially the limited number that are quantita-
tive, a definition of responsibility that is based on causality and counterfactuals has
been argued to be particularly appealing. For example, Malle et al. [6] argue that for
blame to emerge, an agent must be perceived as the cause of a negative event. Sim-
ilarly, Chockler and Halpern [7] extend the definition of causality given by Halpern
and Pearl [8] to account for the degree of responsibility (as opposed to an ‘all or noth-
ing’ definition). However, in each of these frameworks and definitions the problem
of learning has been unaddressed. Instead, the theories are motivated and instantiated
by carefully constructed examples designed by the expert, and so are not necessar-
ily viable in large-scale applications. Indeed, problematic situations encountered by
autonomous systems are likely to be in a high-dimensional setting, with large num-
bers of latent variables capturing the low-level aspects of the application domain, and
potentially requiring fast judgements. Thus, the urgent questions are:

(a) How can models of moral scenarios and blameworthiness be extracted and learnt
automatically from data?

(b) How can judgements be computed effectively and efficiently, given the split-
second decision points faced by some systems?

In this work, we propose and implement a hybrid learning framework for inducing
models of moral scenarios and blameworthiness automatically from data, and rea-
soning tractably from them. To the best of our knowledge, this is the first of such
proposals. We remark that we do not motivate any new definitions for moral respon-
sibility, but show how an existing formal framework [9] can be embedded in our
learning framework. We suspect it should be possible to analogously embed other
definitions from the literature too, and refer the reader to [9,6] for a discussion of
alternative logics and frameworks.

The demands on our learning framework are two-fold. First, it must support the
efficient learning of probabilities. Second, it must be able to compute decisions (i.e.,
probabilistic queries) efficiently. To address these challenges in general, the tractable
learning paradigm has recently emerged [10,11,12], which can induce both high- and
low-treewidth graphical models with latent variables. In this sense, they realise a deep
probabilistic architecture. Most significantly, conditional or marginal distributions
can be computed in time linear in the size of the model. We discuss how the class
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of tractable models considered in [12] turn out to be particularly appropriate for the
task at hand. Overall, our primary contributions within this work can be grouped into
three main areas: theoretical details of an embedding between our chosen framework
and class of model, including complexity results; a fully implemented demonstration
version of our system (with code to be released upon publication [13]); and a series
of experimental results, together with discussion of the more philosophical aspects of
our work.

We begin in Section 2 with an introduction to the particular framework for moral
responsibility and class of model that we use in our framework, along with a sim-
ple, illustrative example of each. In Section 3 we present our embedding between
this framework and model, before providing a series of complexity results (section
4). Details of our implementation are given in Section 5, with full documentation to
be included alongside our code. We then report on experiments (section 6) regarding
the alignment between automated and human judgements of moral decision-making
in three illustrative domains: lung cancer staging, teamwork management, and trol-
ley problems. Finally, in Section 7 we discuss some of the more philosophical issues
surrounding our work, its motivation, and its potential applications, before conclud-
ing with a look at related work and directions for future research (sections 8 and 9
respectively).

2 Preliminaries

In this section we discuss an existing formal framework around which we develop
a learning framework. In particular we build on the causality-based definition from
Halpern and Kleiman-Weiner [9], henceforth HK, discussed in more detail below.
We also provide a brief technical introduction to our model of choice, Probabilistic
Sentential Decision Diagrams (PSDDs) [12], and a brief example in Subsection 2.3
illustrating the use of each.

2.1 Blameworthiness

In order to avoid ambiguity, we follow the authors of HK by using the word blame-
worthiness to capture an important part of what can more broadly be described as
moral responsibility, and consider a set of definitions taken directly from their orig-
inal work, with slight changes in notation for the sake of clarity and conciseness. In
HK, environments are modelled in terms of variables and structural equations relating
their values [8]. More formally, the variables are partitioned into exogenous variables
X external to the model in question, and endogenous variables V that are internal
to the model and whose values are determined by those of the exogenous variables
and some subset of the already determined endogenous variables. A range function
R maps every variable to the set of possible values it may take. We abuse notation
slightly by writing R(Y) instead of ×Y∈YR(Y) for a set of variablesY. In any model,
there exists one structural equation FV : R(X∪V \ {V})→ R(V) for each V ∈ V.
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Definition 1 A causal model M is a pair (S,F ) where S is a signature (X,V,R)
and F is a set of modifiable structural equations {FV : V ∈ V}. A causal setting
is a pair (M, X), where X ∈ R(X) is a called a context.

In general we denote an assignment of values to variables in a set Y as Y. Fol-
lowing HK, we restrict our considerations to recursive models M, in which, given a
context X, the values of all variables in V are uniquely determined. We denote this
unique valuation by V(M,X).

Definition 2 A primitive event is an equation of the form V = v for some V ∈ V,
v ∈ R(V). We denote a causal formula as ϕY←Y where Y ⊆ V and ϕ is a Boolean
formula of primitive events. This says that if the variables in Y were set to values Y
(i.e. by intervention) then ϕ would hold. For such a causal formula ϕY←Y we write
(M, X) |= ϕY←Y if ϕY←Y is satisfied in causal setting (M, X).

An agent’s epistemic state is given by (Pr,K , U) where K is a set of causal set-
tings, Pr : K → [0, 1] is a probability distribution over this set, and U : R(V)→ R≥0
is a utility function.

Definition 3 We define how much more likely it is that ϕ will result from per-
forming an action a than from action a′ using:

δa,a′,ϕ = max

[ ∑
(M,X)|=ϕA←a

Pr(M, X) −
∑

(M,X)|=ϕA←a′

Pr(M, X)

]
, 0


where A ∈ V is a variable identified in order to capture an action of the agent.

The costs of actions are measured with respect to a set of outcome variables
O ⊆ V whose values are determined by an assignment to all other variables. OA←a

(M,X)
denotes the setting of the outcome variables when action a is performed in causal
setting (M, X) and VA←a

(M,X)
denotes the corresponding setting of the endogenous vari-

ables more generally.

Definition 4 The (expected) cost of a relative to O is:

c(a) =
∑

(M,X)∈K

Pr(M, X)
[
U(V(M,X)) −U(VA←a

(M,X)
)
]

Finally, HK introduce one last quantity N to measure how important the costs of
actions are when attributing blame (this varies according to the scenario). Specif-
ically, as N → ∞ then dbN(a, a′,ϕ) → δa,a′,ϕ and thus the less we care about
cost. Note that blame is assumed to be non-negative and so it is required that N >
maxa∈A c(a).

Definition 5 The degree of blameworthiness of a for ϕ relative to a′ (given c and
N) is:

dbN(a, a′,ϕ) = δa,a′,ϕ
N −max(c(a′) − c(a), 0)

N
The overall degree of blameworthiness of a for ϕ is then:

dbN(a,ϕ) = max
a′∈R(A)\{a}

dbN(a, a′,ϕ)
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2.2 PSDDs

Since, in general, probabilistic inference is intractable [14], tractable learning has
emerged as a recent paradigm where one attempts to learn classes of Arithmetic Cir-
cuits (ACs), for which exact inference is tractable [15,12].1 In particular, we use
Probabilistic Sentential Decision Diagrams (PSDDs) [12] which are tractable repre-
sentations of a probability distribution over a propositional logic theory (a set of sen-
tences in propositional logic) represented by a Sentential Decision Diagram (SDD).
SDDs are in turn based on vtrees [17]. PSDDs thus represent a complete, canoni-
cal class with respect to distributional representation, but can also be naturally learnt
with the inclusion of logical constraints or background knowledge.2 We now pro-
vide a brief, formal overview of SDDs and PSDDs and subsequently include a small
example in Subsection 2.3 in order to better illustrate their syntax and semantics. Re-
lationships to other tractable probabilistic models within statistical relational learning
are discussed in Section 8.

Definition 6 A vtree V for a set of variables X is a full binary tree whose leaves are
in a one-to-one correspondence with the variables in X.

Definition 7 S is an SDD that is normalised for a vtree V over variables X if and
only if one of the following holds:

– S is a terminal node such that S = > or S = ⊥.
– S is a terminal node such that S = X or S = ¬X and V is a leaf node correspond-

ing to variable X.
– S is a decision node (p1, s1), ..., (pk, sk) where primes p1, ..., pk are SDDs cor-

responding to the left sub-vtree of V , subs s1, ..., sk are SDDs corresponding to
the right sub-vtree of V , and p1, ..., pk form a partition (the primes are consistent,
mutually exclusive, and their disjunction p1 ∨ ...∨ pk is valid).

We refer to each (pi, si) as an element of a decision node. Each terminal node corre-
sponds to its literal or truth symbol and each decision node (p1, s1), ..., (pk, sk) cor-
responds to the sentence

∨k
i=1(pi ∧ si). S represents a theory (which can be viewed

as a set of logical constraints) in that the root of S evaluates to true if and only if the
assignment of values to the variables in X are consistent with that theory.

Note that in an SDD (and therefore in a PSDD), for any possible assignment
of values X to the variables X that the SDD ranges over, at each decision node
(p1, s1), ..., (pk, sk) at most one prime pi evaluates to true. In fact, though not strictly
necessary, we also make the simplifying assumption that at least one (and thus exactly
one) prime evaluates to true for any possible assignment. For such an assignment X
we write X |= pi. Further, for any decision node corresponding to a node v in the
vtree, the variables Xl under the left sub-vtree and the variables Xr under the right

1 It is important to note that this learning framework itself is approximate, based on log-likelihoods,
and that tractability guarantees are not always extended to the exact learning of ACs [16].

2 In this work we refer to PSDDs as statistical relational models as we learn them in the presence of
logical constraints (encoding relations), but in the absence of such constraints it is more correct to call
them purely statistical models.
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sub-vtree partition the set of variablesX in the vtree rooted at v, and hence the primes
p1, ..., pk are sentences over Xl and the subs s1, ..., sk are sentences over Xr.

Definition 8 A PSDD P is a normalised SDD S (for some vtree V) with the follow-
ing parameters:

– For each decision node (p1, s1), ..., (pk, sk) and prime pi a non-negative parame-
ter θi such that

∑k
i=1 θi = 1 and θi = 0 if and only if si = ⊥.

– For each terminal node > a parameter θ such that 0 < θ < 1 (denoted as X : θ
where X is the variable of the vtree node that > is normalised for).

These parameters then describe the probability distribution over the SDD theory as
follows. For each node n in P, normalised for some vtree node v in V , we have a
distribution Prn over the set of variables X in the vtree rooted at v where:

– If n is a terminal node and v has variable X:

n Prn(X) Prn(¬X)

X 1 0
¬X 0 1
X : θ θ 1 − θ
⊥ 0 0

– If n is a decision node (p1, s1), ..., (pk, sk) with parameters θ1, ..., θk and v has
variables Xl in its left sub-vtree and variables Xr in its right sub-vtree:

Prn(Xl, Xr) =
k∑

i=1

θiPrpi(Xl)Prsi(Xr) = θ jPrp j(Xl)Prs j(Xr)

for the single j such that Xl |= p j.

Most significantly, probabilistic queries, such as conditionals and marginals, can
be computed in time linear in the size of the model. PSDDs can also be learnt from
data [18], possibly with the inclusion of logical constraints standing for background
knowledge. The ability to encode logical constraints into the model (unlike in other
tractable probabilistic models, such as the more common Sum-Product Network [10],
for example) directly enforces sparsity which in turn can lead to increased accuracy
and decreased size. A small selection of ethical considerations relating to the possible
use of constraints within our learning framework are discussed in Section 7. Aside
from this, the intuitive interpretation of both local and global semantics that can be
given to the parameters in a PSDD allows for a degree of explainability not found in
other deep probabilistic architectures [12]. A final advantage of PSDDs with respect
to our work is that their underlying logical representation makes them particularly
conducive to our embedding of the structural equations framework (though existing
work in this area is still in its early stages [19]), as we explain further in Section 3.1.
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2.3 Example

Here we provide a simple worked example demonstrating each of the two frame-
works above (we refer the reader to the original works for more extensive examples
[12,9]), though this subsection may safely be skipped with respect to our results and
later discussion. The experimental results in Section 6 provide examples of our par-
ticular embedding of HK’s framework, and more realistic applications are discussed
in Section 7.

Consider the following decision-making scenario, with four binary variables, in
which Alfred is walking to work and is not sure if it will rain (R); he thinks the prob-
ability that it will is 0.5. If he decides to go back and collect his umbrella (U) there
is a probability (again, 0.5) he will be late (L). However, more important than his
being on time is whether he arrives at work wet (W) or dry (¬W). In HK’s frame-
work we have X = {R} and V = {U, W, L}. Let M1 contain these variables and the
structural equations F1 such that Alfred is late to work due to his going back, and
M2 include structural equations F2 such that he is not late despite going back.3 Then
K = {(M1,¬R), (M1, R), (M2,¬R), (M2, R)} and Pr is such that Pr(M, X) = 0.25
for all (M, X) ∈ K . We define our utility function such that being on time gives utility
2 and remaining dry gives utility 3 (meaning overall utilities fall in the range [0, 5]).
A causal graph and set of structural equations for M1 and the context R = 1 is given
in Figure 1.

R L

W U

Variable Equation Note

R 1 Due to the context R = 1
U R The ‘default’ strategy
L U Varies between M1 and M2
W R(1 −U) The same in M1 and M2

Fig. 1 A causal graph and set of structural equations representing the causal setting (M1, R) in which it
rains and Alfred is late to work if he goes back to collect his umbrella.

Suppose we wish to compute dbN(U,¬U, L = 1) with N = 2, say: how blame-
worthy Alfred is for being late to work because he went back to get his umbrella.
Note that {(M, X) : (M, X) |= (L = 1)U←1} = {(M1,¬R), (M1, R)} and {(M, X) :
(M, X) |= (L = 1)U←0} = ∅. Thus we have δU,¬U,L=1 = max

(
[(0.25 + 0.25) −

0], 0
)
= 0.5. Next, we sum over the differences in expected utility across all causal

models to find that c(U) = 0.25[5 − 3] + 0.25[3 − 3] + 0.25[5 − 5] + 0.25[5 − 5] =
0.5. Similarly, we have c(¬U) = 1. Substituting these values into the final equation
gives db2(U,¬U, L = 1) = δU,¬U,L=1

2−max(c(¬U)−c(U),0)
2 = 0.375.

Now, using the same variables and probabilities as above, let us imagine we have
some dataset of decision-making scenarios (gathered from irrational agents, if we are

3 Here we assume that the ‘default’ option in any one specific causal model is to collect the umbrella if
it will rain and not when it won’t, though of of course Alfred does not have this perfect information.
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to assume the same utility function as above) in which the umbrella is collected with
probability 0.667 when it rains and probability 0.444 otherwise. We might also wish
to constrain our model with background knowledge such that the decision-maker
arrives to work wet if and only if it is raining and they don’t have their umbrella
(W ↔ (R ∧ ¬U), akin to the structural equation W = R(1 −U), for example) and
that they cannot be late if they don’t go back for their umbrella (¬U → ¬L, consistent
with structural equations L = U in M1 and L = 0 in M2). Combining these data and
constraints allows our system to learn the small PSDD shown in Figure 2 (note that
the model would typically be further compacted by removing superfluous branches or
nodes and possibly joining some of the remaining nodes, but for ease of presentation
we have not done so here).

5

¬L¬W

1

L ⊥

0

5

¬L W

1

L ⊥

0

5

L ¬W

0.5

¬L¬W

0.5

3

0.278 0.167 0.556

1

¬R¬U

1

R ⊥

0

1

R ¬U

1

¬R⊥

0

1

R U

0.6

¬R U

0.4

Fig. 2 A PSDD encoding all features of the example data and constraints as defined above.

3 Blameworthiness Via PSDDs

We aim to leverage the learning of PSDDs, their tractable query interface, and their
ability to handle domain constraints for inducing models of moral scenarios.4 This is
made possible by means of an embedding that we sketch below in terms of the key
components of our models and computations: variables, probabilities, utilities, and
finally costs and blameworthiness. In each subsection we also discuss any assump-
tions required and choices made. At the outset, we reiterate that we do not introduce
new definitions here, but show how an existing one, that of HK, can be embedded
within a learning framework. Where there is any chance of ambiguity we denote the
original definitions with a superscript HK .

4 Our technical development can leverage both parameter and (possibly partial) structure learning for
PSDDs. Of course, learning causal models is a challenging problem [20], and in this regard, probabilistic
structure learning is not assumed to be a recipe for causal discovery in general [21]. Rather, we learn a
probabilistic model from data without making any claims about the causal dependencies between variables
that may be induced and show how, under certain assumptions discussed later, we are able to perform
causal reasoning such as conditioning on intervention.
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3.1 Variables

We first distinguish between scenarios in which we do and do not model outcome
variables. In both cases we have exogenous variablesX, but in the former the endoge-
nous variablesV are partitioned into decision variables D and outcome variables O,
and in the latter we have V = D = O (this does not affect the notation in our later
definitions, however). This is because we do not assume that outcomes can always
be recorded, and in some scenarios it makes sense to think of decisions as an end in
themselves.

Our range function R is defined by the scenario we model, but in practice we one-
hot encode the variables and so the range of each is simply {0, 1}. A subset (possibly
empty) of the structural equations in F is implicitly encoded within the structure of
the SDD underlying the PSDD, corresponding to the logical constraints that remain
true in every causal model M. The remaining equations are those that vary depending
on the causal model. Each possible assignment V (in other words D and O) given X
corresponds to a set of structural equations that combine with those encoded by the
SDD to determine the values of the variables in V given X, as we make the trivial
assumption that all parentless variables are considered exogenous. The PSDD then
corresponds to the probability distribution Pr over K , compacting everything neatly
into a single structure, as described in Subsection 3.2.

To be more precise regarding our use of the word ‘implicitly’ in the above para-
graph, structural equations can be viewed as encoding (in a specific functional form)
dependencies and independencies between variables. Such dependencies are simi-
larly (though not identically) captured by propositional formulae involving multiple
variables. In fact, just as one may read off independencies from casual graphs repre-
senting sets of structural equations using the well-known d-separation criterion [22],
it is also possible to read off independencies from the structure of a PSDD (though
this feature is not necessary for our purposes). Such structures, more generally, enable
context-specific independence [23,12]. We further note that the framework of HK es-
sentially involves events of the form V = v (see Definition 2) which can be viewed
instead simply as propositions [8] (especially when considering binary variables, as
in our equivalent one-hot encoding), in turn meaning that structural equations repre-
sent logical formulae. While this suits our choice of PSDDs well, we remark that in
general structural equations may be far more complex and therefore less amenable to
the embedding we describe here.

Returning to our example in Figure 1, if we were to enforce the constraint U ↔ R
in the PSDD in Figure 2 then this would capture the dependency U = R or R = U
(where ‘=’ is directional in the standard sense of structural equations [22]).5 We note,
however, that for the purposes of learning a distribution from data, the direction in
this structural equation does not matter per se. Where the direction is revealed, and
is critically important, is when intervening on variables. For example, intervening on

5 We have offered a very simple instance here, as in the general case logical constraints in a PSDD
serve to rule out sets of structural equations (if they are logically inconsistent with the constraints) rather
than capture them directly (and so we would have to provide a set of possible equations as an example
for a single logical constraint). The link between structural equations and constraints is thus by no means
‘one-to-one’.
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R would change the value of U when the equation is U = R but not when R =
U. This difference underlies why in general it is not possible to answer arbitrary
causal queries using a probabilistic model. In this work, however, our queries are of
a specific form which means that a probabilistic model is sufficient for our purposes
(as explained in the following section). Therefore, although our models do not encode
directionality in the same way as structural equations, they are nonetheless suitable
for our embedding. On a related theme, we also note that the opposite direction of
obtaining structural equations from PSDDs is also non-trivial, though there is recent
work in this direction [19].

Our critical assumption here is that the signature S = (X,V,R) (the variables
and the values they may take) remains the same in all models, although the structural
equations F (the ways in which said variables are related) may vary. Given that each
model represents an agent’s uncertain view of a decision-making scenario we do
not think it too restrictive to keep the elements of this scenario the same across the
potential eventualities, so long as the way these elements interact may differ. Indeed,
learning PSDDs from decision-making data requires that the data points measure the
same variables each time.

3.2 Probabilities

Thus, by partially encoding the possible sets of structural equations governing the
variables in the domain (those not ruled out by the logical constraints on the PSDD),
the represented distribution Pr : R(X∪D∪O) → [0, 1] ranges over assignments to
variables instead of a set of causal models K . As a slight abuse of notation we write
Pr(X, D, O). The key observation needed to translate between these two distributions
(we denote the original as PrHK) is that each set of structural equations F together
with a context X deterministically leads to a unique, complete assignment V of the en-
dogenous variables, which we write (abusing notation slightly again) as (F , X) |= V.
In general there may be many such sets of equations that lead to the same assignment
(in other words, many possible sets of rules governing the world which, given a con-
text, produce the same result), which we may write as {F : (F , X) |= V}. This
observation relies on our assumption above, which implies that for any causal model
(M, X) we in fact have PrHK(M, X) = PrHK((S,F ), X) = PrHK(F , X), as the sig-
nature S is the same in all models. Hence, for any context X and any (possibly empty)
assignment Y for Y ⊆ V we may translate between the two distributions as follows:

Pr(X, Y) =
∑

(F ,X)|=Y

PrHK(F , X)

Given our assumptions and observations described above, the following proposition
is immediate.

Proposition 1 Let PrHK be a probability distribution over a set of causal settingsK .
Further, assume that the signatureS = (X,V,R) in each causal setting M = (S,F )
remains fixed. Then there exists a PSDD P representing a distribution Pr over the
variables in X and V such that for any context X, the joint probability of Y also
occurring (where Y ⊆ V) is the same under both PrHK and Pr.
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We view a Boolean formula of primitive events (possibly resulting from deci-
sion A) as a function ϕ : R(Y) → {0, 1} that returns 1 if the original formula
over Y ⊆ V is satisfied by the assignment, or 0 otherwise. Here, the probability
of ϕ occurring given that action a is performed (i.e. conditioning on intervention)∑

(M,X)|=ϕA←a PrHK(M, X) given by HK can be written more simply as Pr(ϕ | do(a)).
Note that in general, it is not the case that Pr(ϕ | do(a)) = Pr(ϕ | a), where Pr(ϕ | a) is
defined as the standard conditioning on observation. However, given the specific na-
ture of the causal models in our framework which capture sequential/temporal moral
decision-making scenarios (in which one or more decisions are made in some con-
text, each producing one or more outcomes), and given that the quantities we calcu-
late only require us to intervene on decision variables, we are able to make use of
a certain technical result and compute intervention conditionals in terms of observa-
tion conditionals. We note here that our mild assumptions below on the structure of
the domain refers to the structure of the actual data-generating process rather than
referring to some feature of the learnt PSDD.

X

ADpre Dpost

Opre Opost

Fig. 3 A causal graph representing the form of sequential moral decision-making scenario we consider in
this work. Dashed edges indicate sets of variables (which may also contain other arrows between nodes;
it is assumed that such arrows break the apparent cyclicity between Dpre and Dpost , and Opre and Opost)
and solid edges indicate single variables. Arrows represent causal connections. The set of variables PRE
is highlighted in red and blocks all back-door paths between POST (highlighted in blue) and the decision
variable in question, A, thus forming a sufficient set.

To see this, note that in the causal graph of such a decision-making scenario
(see Figure 3), the ancestors (by which we mean those nodes with a directed causal
path to the node in question) of a decision variable A, representing some action, are
a (possibly non-proper) subset of the context variables X, any preceding decision
variables Dpre, and any outcome variables that have been determined Opre, where
we write PRE = X ∪Dpre ∪ Opre to denote this set. Note also that any remaining
decisions Dpost and outcomes Opost, where we similarly write POST = Dpost ∪

Opost, are in turn caused by the variables in PRE ∪ {D}. This is true simply in virtue
of the form of decision-making scenarios that we consider in this work. Given this,
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we may use the back-door criterion [22] with PRE as a sufficient set (meaning that
no element of PRE is a descendant of A and that PRE blocks all back-door paths
from POST to A) to write:

Pr(POST | do(a)) =
∑
PRE

Pr(POST | a, PRE) Pr(PRE)

Here we write PRE and POST for instantiations of PRE and POST respectively,
just as for a variable set Y and an instantiation Y. Note that PRE, POST , and {A}
partition the full set of variables, and in the case where there is only a single decision,
D = {A}, then we have simply PRE = X and POST = O. Given the equality above
we may thus compute the quantity Pr(ϕ | do(a)) as follows:

Pr(ϕ | do(a)) =
∑

POST
Pr(ϕ(POST) | do(a))

=
∑

POST
ϕ(POST) Pr(POST | do(a))

=
∑

POST

∑
PRE

ϕ(POST) Pr(POST | a, PRE) Pr(PRE)

where we again use our mapping between Pr and PrHK given above. With this equiv-
alence we define our term δa,a′,ϕ = max([Pr(ϕ | do(a)) − Pr(ϕ | do(a′))], 0) as in
HK. In some cases we may wish to calculate blameworthiness in scenarios in which
the distribution over contexts is not the same as in our training data. Fortunately,
due to our factorised sum above this is as simple as allowing the user of our system
the option of specifying a current, alternative distribution over contexts and existing
observations Pr′(PRE), which then replaces the term Pr(PRE) in each summand.

We remark here that although the causal structure illustrated in Figure 3 admits a
wide range of sequential moral decision-making scenarios and allows us to compute
all of the quantities we need, it is also the case that additional variables and depen-
dencies could invalidate our use of the back-door criterion, and that it is certainly not
possible to compute the effects of arbitrary interventions in this model. Returning to
our previous example, suppose (as illustrated in the left half of Figure 4) that both Al-
fred’s decision to take his umbrella and whether or not he is late to work depends on
whether he sees the bus approaching from out of the window (B). If we were, for some
reason, unable to condition on B as part of a sufficient set, then the back-door path
L←− B −→ U would not be blocked and thus Pr(l, w | do(u)) , Pr(l, w | u, r) Pr(r).
Similarly if we wanted to, say, condition on an intervention on a non-decision variable
then we would not be able to. Consider the slightly modified version of the original
scenario in which L also depends on W (perhaps because Alfred cycles to work and
is slower when his clothes are wet) in the right half of Figure 4, and consider an inter-
vention do(w). Then Pr(l | do(w)) , Pr(l | w, r) Pr(r) because there is an unblocked
back-door path L←− U −→ W.
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Fig. 4 Two causal graphs indicating how the back-door criterion can be violated when extra variables are
added that we are unable to condition on (left) and when the intervention in question is not made on a
decision node (right).

3.3 Utilities

We now consider the utility function U, the output of which we assume is normalised
to the range [0, 1].6 For simplicity we (trivially) restrict our utility functions to be
over outcomes O = (O1, ..., On) (and optionally parameterised using contexts X)
instead of the full set of endogenous variables. In our implementation we allow the
user to input an existing utility function or to learn one from data. In the latter case
the user further specifies whether or not the function should be context-relative, i.e.
whether we have U(O) or U(O; X) (our notation) as, in some cases, how good a
certain outcome O is naturally depends on the context X. Similarly, the user also
decides whether the function should be linear in the outcome variables, in which
case the final utility is U(O) =

∑
i Ui(Oi) or U(O; X) =

∑
i Ui(Oi; X) respectively

(where we assume that each Ui(Oi; X) or Ui(Oi) is non-negative). Here the utility
function is simply a vector of weights and the total utility of an outcome is the dot
product of this vector with the vector of outcome variables (O1, ..., On).

When learning utility functions, the key assumption we make (before normali-
sation) is that the probability of a certain decision being made given a context is
proportional to some function of the expected utility of that decision in the context,
i.e. Pr(D | X) ∝ f (

∑
O U(O) Pr(O | D, X)). Note that here a decision is a general

assignment D and not a single action a, and U(O) may be context-relative and/or lin-
ear in the outcome variables. In our implemented demonstration system we make the
simplifying assumption that f is the identity function (and thus the proportionality
represents a linear relationship), however this is by no means necessary. In general
we may choose any invertible function f (on the range [0, 1]) and simply apply f −1

to each datum Pr(D | X) before fitting our utility function, the process of said fit-
ting being described in Section 5.7 For example, using f (x) = exp(x) − 1 allows
us to capture (a slightly modified version of) the commonly-used Logistic Quantal
Response model of bounded rationality, sometimes referred to as Boltzmann Ratio-
nality, in which the likelihood of a certain decision is proportional to the exponential
of the resulting expected utility [24].

6 This has no effect on our calculations as we only use cardinal utility functions with bounded ranges,
which are invariant to positive affine transformation.

7 In general we should expect f to be a positive monotonic transformation with non-negative range so
as to preserve the ordinality of utilities.
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This proportionality assumption is critical to the learning procedure in our im-
plementation, however we believe it is in fact relatively uncontroversial, and can be
restated as the simple rationality principle that an agent is more likely to choose a
decision that leads to a higher expected utility than one that leads to a lower ex-
pected utility. If we view decisions as guided by a utility function, then it follows that
the decisions should, on average, be consistent with and representative of that utility
function. Of course this is not always true (consider the smoker who wishes to quit
but cannot due to their addiction), and attempting to learn the preferences of fallible,
inconsistent agents such as humans is a particularly interesting and difficult problem.
While outside the scope of our current work, we refer the reader to Evans et al. for a
recent discussion [25]. We also note here that learning moral preferences from data
must be done sensitively, at is it is quite possible the data may include biases that
we would typically deem unethical. Space precludes us from discussing this impor-
tant issue further, but it is undoubtedly a key concern in practice for any method that
learns from human decision-making.

3.4 Costs and Blameworthiness

Finally, we adapt the cost function given in HK, denoted here by cHK . As actions do
not deterministically lead to outcomes in our work, we cannot use OA←a

(M,X)
to represent

the specific outcome when decision a is made (in some context (M, X)). For our
purposes it suffices to use:

c(a) = −
∑
O

U(O) Pr(O | do(a)) = −
∑

O,PRE
U(O) Pr(O | a, PRE) Pr(PRE)

Again, U may be context-relative and/or linear in the outcome variables. This is
simply the negative expected utility over all contexts and preceding decisions/outcomes,
conditioning by intervention on decision A ← a. By assuming as before that action
a is causally influenced only by the variables in set PRE (i.e. PRE is a sufficient
set for A) we may again use the back-door criterion [22] to write Pr(O | do(a)) =∑

PRE Pr(O | a, PRE) Pr(PRE). With this useful translation between conditioning on
intervention and conditioning on observation, alongside our earlier result converting
between PrHK and Pr, it is a straightforward exercise in algebraic manipulation to
show the following proposition.

Proposition 2 Let cHK be a cost function determined using a distribution PrHK and
utility function U. Then, given an equivalent distribution Pr (via the assumptions and
result of Proposition 1) and the assumption thatX forms a sufficient set for any action
variable A, the cost function c determined using Pr and U is such that for any values
a, a′ of A: c(a′) − c(a) = cHK(a′) − cHK(a).

As dbN(a, a′,ϕ) = δa,a′,ϕ
N−max(c(a′)−c(a),0)

N it follows that our cost function is
equivalent to the one in HK with respect to determining blameworthiness scores.
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Again, in our implementation we also give the user the option of updating the dis-
tribution over contexts and previously observed variables Pr(PRE) to some other
distribution Pr′(PRE) so that the current model can be re-used in different scenar-
ios. Given δa,a′,ϕ, c(a), and c(a′), both dbN(a, a′,ϕ) and dbN(a,ϕ) are computed as
in HK, although we instead require that N > −mina∈Ac(a) (the equivalence of this
condition to the one in HK is trivial). With this the embedding is complete.

Proposition 3 Let Pr and c be equivalents of PrHK and cHK under the assumptions
and results described in Propositions 1 and 2. Then for any values a, a′ of any action
variable A ∈ D ⊆ V, for any Boolean formula ϕ, and any valid measure of cost
importance N, the values of δa,a′,ϕ, dbN(a, a′,ϕ), and dbN(a,ϕ) are the same in our
embedding as in HK.

4 Complexity Results

Given our concerns over tractability we provide several computational complexity
results for our embedding. Basic results were given in HK, but only in terms of the
computations being polynomial in |M|, |K|, and |R(A)| [9]. Here we provide more
detailed results that are specific to our embedding and to the properties of PSDDs.
The complexity of calculating blameworthiness scores also depends on whether the
user specifies an alternative distribution Pr′ in order to consider specific contexts only,
although in practice this is unlikely to have a major effect on tractability. Finally, note
that here we assume that the PSDD and utility function are given in advance and
so we do not consider the computational cost of learning. This parallels the results
in HK, in which only the cost of reasoning is considered (there is no mention of
how their models are obtained). As mentioned previously, guarantees in the tractable
learning paradigm are provided for tractable inference within learnt models, but not
for the learning procedure itself, which is often approximate [16]. A summary of our
results is given in Table 1.

Here, O(|P|) is the time taken to evaluate the PSDD P where |P| is the size of the
PSDD, measured as the number of parameters; O(U) is the time taken to evaluate
the utility function; and O(|ϕ|) is the time taken to evaluate the Boolean function ϕ,
where |ϕ|measures the number of Boolean connectives in ϕ. The proofs of the results
above are an easy exercise (we give an informal explanation of each in the following
paragraph), though for illustrative purposes we provide one example.

Proposition 4 δa,a′,ϕ can be calculated using our framework with time complexity
O(2|X|+|D|+|O|(|ϕ|+ |P|)).

Proof: First recall that, following the definitions in HK and our embedding from
Section 3, in our framework we use:

δa,a′,ϕ = max
([

Pr(ϕ | do(a)) − Pr(ϕ | do(a′))
]
, 0

)
Where, as was shown in Subsection 3.2:

Pr(ϕ | do(a)) =
∑

POST

∑
PRE

ϕ(POST) Pr(POST | a, PRE) Pr(PRE)
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The proof now follows straightforwardly from inspection of the terms involved. Cal-
culating Pr(PRE) and Pr(POST | a, PRE) can each be done in time O(|P|), linear in
the size of the PSDD P representing the distribution over all variables [12]. ϕ(POST)
is computed in time O(|ϕ|), linear in the length of ϕ. Thus, forming each summand in
the expression for Pr(ϕ | do(a)) takes time O(|P|+ |ϕ|), and as each variable being
summed over is binary, we need to calculate at most 2|X|+|D|+|O| − 1 such summands,
giving us a time complexity for Pr(ϕ | do(a)) of O(2|X|+|D|+|O|(|ϕ|+ |P|)). This is
the same for our other term Pr(ϕ | do(a′)), and the remaining arithmetic operations
can be performed in constant time, meaning the final complexity of calculating δa,a′,ϕ

is also O(2|X|+|D|+|O|(|ϕ|+ |P|)). �

Term Time Complexity

δa,a′ ,ϕ O(2|X|+|D|+|O|(|ϕ|+ |P|))
c(a) O(2|X|+|O|(U + |P|))
dbN(a, a′,ϕ) O(2|X|+|O|(U + 2|D|(|ϕ|+ |P|)))
dbN(a,ϕ) O(|R(A)|2 | X|+|O|(U + 2|D|(|ϕ|+ |P|)))

Table 1 Time complexities for each of the key terms that we compute. If the user specifies an extra
distribution Pr′ over contexts, then the complexity is given by the expressions below with each occurrence
of the term |P| replaced by |P|+ Q, where O(Q) is the time taken to evaluate Pr′.

Note that although we have to evaluate ϕ each time, in practice only a small
subset of all possible models will evaluate to true and thus remain in our final sum
for Pr(ϕ | do(a)). By evaluating ϕ first we may therefore greatly reduce the number
of causal models that require evaluation under Pr. This, alongside being able to factor
out terms ϕ(POST) and Pr(PRE) from δa,a′,ϕ, means that our actual computations
will be far more efficient than this worst-case bound.

Calculating the cost of an action c(a) is a simple matter of summing over all
possible outcomes in O and contexts in X, evaluating the utility of each combination
(complexity O(U)) and two probabilities (each having complexity O(|P|)): that of the
context and that of the outcome given action a and the context. As described above,
once we have δa,a′,ϕ, c(a), and c(a′), both dbN(a, a′,ϕ) and dbN(a,ϕ) are computed
as in HK, where dbN(a, a′,ϕ) requires the computation of δa,a′,ϕ and the costs of
two actions c(a) and c(a′), and dbN(a,ϕ) requires the same process |R(A)| times.
Combining and factoring the complexity results for δa,a′,ϕ and c(a) accordingly gives
us the time complexities for calculating blame using our embedding.

Finally, we observe that all of these complexities are exponential in the size of at
least some subset of the variables. This is a result of the Boolean representation; our
results are, in fact, more tightly bounded versions of those in HK, which are each poly-
nomial in the size of |K| = O(2|X|+|D|+|O|). In practice, however, we only sum over
worlds with non-zero probability of occurring. Using PSDDs allows us to exploit this
fact in ways that other models cannot, as we can logically constrain the model to have
zero probability on any impossible world. Thus, when calculating blameworthiness
we can ignore a great many of the terms in each sum and speed up computation dra-
matically. To give some concrete examples, the model counts (variable assignments
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with non-zero probability) of the PSDDs in our three experiments were 52, 4800, and
180 out of 212, 221, and 223 total variable assignments, respectively.

5 Implementation

The importance of having implementable models of moral reasoning has been stressed
by Charisi et al. [26], amongst others. In this section we provide a brief summary of
our implementation, before proceeding to experimentally evaluate it in Section 6.
The underlying motivation behind our demonstration system (a high-level overview
of which can be seen in Figure 5) was that a user should be able to go from any
stage of creating a model to generating blameworthiness scores as conveniently and
as straightforwardly as possible. Any inputs and outputs can be saved and thus each
model and its results can be easily accessed and re-used if needed. Our implementa-
tion makes use of two existing resources: The SDD Package 2.0 [27], an open-source
system for creating and managing SDDs, including compiling them from logical con-
straints; and LearnPSDD [18], a recently developed set of algorithms that can be used
to learn the parameters and structure of PSDDs from data, learn vtrees from data, and
to convert SDDs into PSDDs. While this work is not the appropriate place to explain
the precise details of this software (we refer the interested reader to [17,27,18]), we
give a brief description of their workings in what follows.

The SDD Package 2.0 functions by initialising an SDD based on a vtree (which
can be created at the same time or read from a file) and then gradually constructs
the model from a propositional logic theory using a series of logical operations that
are sequentially applied to larger and larger sub-SDDs over the set of variables.
LearnPSDD can be used either with or without logical constraints. When used with
constraints, the structure of the PSDD is found by compiling them into an SDD (as de-
scribed above), and the parameters are given by their maximum likelihood estimates
(possibly with smoothing). Without constraints, LearnPSDD first learns a vtree over a
set of variables by splitting branches between variable subsets that minimise the aver-
age pairwise mutual information between the variables, then iteratively performs two
operations, split and clone (described in more detail in [18]), on an initialised PSDD
over the given vtree until a time or size limit is reached, or until the log likelihood of
the model converges.

As well as making use of existing code, we also provide novel code for the re-
maining parts of the overall learning framework. These are as follows:

– Building and managing models, and accepting various optional user inputs such
as hand-specified utility functions or logical constraints specified in simple infix
notation (e.g. (A ∧ B) ↔ C can be entered using =(&(A,B),C)) and then con-
verted to restrictions upon the learnt model. Being able to run the demonstration
without using The SDD Package 2.0 or LearnPSDD directly greatly simplifies
the interface to these two packages.

– Performing inference by evaluating the model or by calculating the most probable
evidence (MPE), both possibly given partial evidence (as these functionalities are
not provided in the original LearnPSDD package). Each of our inference algo-
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rithms are linear in the size of the model, and are based on pseudocode given in
[12] and [28] respectively.

– Learning utility functions from data, whose properties (such as being linear or
being context-relative) are specified by the user in advance. This learning is done
by forming a matrix equation representing our assumed proportionality relation-
ship Pr(D | X) ∝ f (

∑
O U(O) Pr(O | D, X)) across all decisions and contexts,

then solving to find utilities using non-negative linear regression with L2 regu-
larisation (equivalent to solving a quadratic program). In particular, writing A =
Pr(O |D, X), b = Pr(D |X), and x = U(O), we solve arg minx(‖Ax− f −1(b)‖22 +
λ‖x‖22) where λ is a regularisation constant and ‖ · ‖ 2

2 is the square of the Euclidean
norm.

– Computing blameworthiness by efficiently calculating the key quantities defined
by our embedding described in Section 3, using parameters for particular queries
given by the user when required. Results are displayed in natural language and
automatically saved for future reference.

The packaged version of our implementation (including full documentation), our
data, and the results of our experiments detailed below will be made available online
upon publication [13].

6 Experiments and Results

Using our implementation we learnt several models using a selection of datasets from
varying domains in order to test our hypotheses. In particular we answer three ques-
tions in each case:

(Q1) Does our system learn the correct overall probability distribution?
(Q2) Does our system capture the correct utility function?
(Q3) Does our system produce reasonable blameworthiness scores?

In this section we first summarise the results from our three experiments before pro-
viding a more in-depth analysis of our final experiment as an example. We direct the
interested reader to Appendix A for results from the other two experiments. Appendix
B contains summaries of our datasets.

6.1 Summary

We performed experiments on data from three different domains. In Lung Cancer
Staging we used a synthetic dataset generated from the lung cancer staging influence
diagram given in [29]. The data was generated assuming that the overall medical de-
cision strategy recommended in the original paper is followed with some high proba-
bility at each decision point. In this experiment, the utility of an outcome is captured
by the expected length of life of the patient given that outcome, and the aim should
be to make decisions regarding the diagnostic tests or treatments to apply that max-
imise this, meaning blame could reasonably be attributed to decisions that fail to do
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Fig. 5 The control flow of our system, split into two halves. Rounded rectangles are start and end points,
diamonds represent decisions, parallelograms correspond to inputs from the user, and rectangles are pro-
cesses undertaken by the program. q refers to an optional alternative distribution over context and preced-
ing decision/observation variables (allowing our model to re-used in a variety of scenarios) and N refers to
the measure of cost importance defined earlier.

so. The Teamwork Management experiment uses a recently collected dataset of hu-
man decision-making in teamwork management [30]. This data was recorded from
over 1000 participants as they played a game that simulates task allocation processes
in a management environment, and includes self-reported emotional responses from
each participant based on their performance. Here, different levels of blame are at-
tributed to decision strategies that lead to lower-self reported happiness scores with
respect to the various levels of the game and outcomes that measure performance
such as the timeliness and quality of the work managed. Finally, in Trolley Problems
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we devised our own experimental setup with human participants, using a small-scale
survey (documents and data are included in the code package [13]) to gather data
about hypothetical moral decision-making scenarios. These scenarios took the form
of non-deterministic and expanded variants on the famous trolley problem [2], where
blame can quite intuitively be attributed (as explained in more detail in Subsection
6.2 below) to the participant’s decisions about who should live or die depending on
the context and outcomes.

For (Q1), we begin by noting that although we embed a causal framework in
our choice of statistical relational model (PSDDs), that (as shown in Section 3.2) the
causal queries we need to answer within this framework can be computed using stan-
dard probabilistic methods. Thus, the question of how well we are able to answer
such queries reduces to the question of how well we are able to compute the relevant
probabilities, and thus to how well our system learns the correct overall probability
distribution. This essentially requires an evaluation of density estimation, which we
measure via the overall log likelihood of the models learnt by our system on training,
validation, and test datasets (see Table 2). A full comparison across a range of similar
models and learning techniques is beyond the scope of our work here, although to
provide some evidence of the competitiveness of PSDDs we include the log likeli-
hood scores of a sum-product network (SPN), another tractable probabilistic model,
created using Tachyon [31] as a benchmark. We also compare the sizes (measured
by the number of nodes) and the log likelihoods of PSDDs learnt with and without
logical constraints in order to demonstrate the effectiveness of the former approach.
We reiterate here that we include these comparisons not to thoroughly benchmark our
models against a suite of baselines, but merely to indicate that their performance is
in line with competitors. A brief further discussion of said competitors and related
models in probabilistic logic learning is included in Section 8. In Section 6.2 we
also provide, as an illustrative example, a more intuitive visual representation of the
learnt marginal distribution over decision variables for one particular moral decision-
making scenario.

Model Training Validation Test Size

PSDD* -2.047 -2.046 -2.063 134
1 PSDD -2.550 -2.549 -2.564 436

SPN -3.139 -3.143 -3.158 1430

PSDD* -5.541 -5.507 -5.457 370
2 PSDD -5.637 -5.619 -5.556 931

SPN -7.734 -7.708 -7.658 3550

PSDD* -4.440 -4.510 -4.785 368
3 PSDD -6.189 -6.014 -6.529 511

SPN -15.513 -16.043 -15.765 3207

Table 2 Log-likelihoods and sizes of the constrained PSDDs (the models we use in our system, indi-
cated by the * symbol), unconstrained PSDDs, and the SPNs learnt in our three experiments. Higher
log-likelihoods are better, as are lower sizes (measured by the number of model parameters).
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Answering (Q2) is more difficult, as self-reported measures of utility (or other
proxy metrics, such as life expectancy in Lung Cancer Staging, for example) may
form an unreliable baseline. More generally, one might argue that to attempt to mea-
sure utility quantitatively is problematic in and of itself. Though discussion of this
question is beyond the scope of our work here, we note that in recent years, with
experiments such as the ‘Moral Machine’ [32], we have seen efforts to capture the
moral judgements of humans in a principled and quantitative fashion. It is also the
case that in many applications (such as the use of QALYs in healthcare, or the field of
preference elicitation), things of moral value are evaluated using a quantitative frame-
work in a way that is widely accepted by professionals in that area as well as by moral
philosophers. In our experiments, our models are able to learn utility functions that
match preferences up to ordinality in most cases, but the cardinal representations of
utilities depends greatly on the function f in the proportionality relationship between
expected decision probabilities and expected utilities. The exact choice of f is highly
domain-dependent and an area for further experimentation in future.

In attempting to answer (Q3) we divide our question into two parts: does the sys-
tem attribute no blame in the correct cases, and does the system attribute more blame
in the cases we would expect it to (and less in others)? Needless to say, similar con-
cerns such as those raised above about the measurement of utility apply to the notion
of blame, and it is very difficult (perhaps even impossible, at least without an exten-
sive survey of human opinions) to produce an appropriate metric for how correct our
attributions of blame are. However, we suggest that these two criteria are the most
fundamental and capture the core of what we want to evaluate in these initial exper-
iments. We successfully queried our models in a variety of settings corresponding to
the two questions above and present representative examples below.

6.2 Trolley Problems

In this experiment we extend the well-known trolley problem, as is not uncommon in
the literature [32], by introducing a series of different characters that might be on ei-
ther track: one person, five people, 100 people, one’s pet, one’s best friend, and one’s
family. We also add two further decision options: pushing whoever is on the side track
into the way of the train in order to save whoever is on the main track, and sacrificing
oneself by jumping in front of the train, saving both characters in the process. Our
survey then took the form of asking each participant which of the four actions they
would perform (the fourth being inaction) given each possible permutation of the six
characters on the main and side tracks (we assume that a character could not appear
on both tracks in the same scenario). The general setup can be seen in Figure 6, with
locations A and B denoting the locations of people on the main track and side track
respectively.

Last of all, we added a probabilistic element to our scenarios whereby the switch
only works with probability 0.6, and pushing the character at location B onto the main
track in order to stop the train succeeds with probability 0.8. This was used to account
for the fact that people are generally more averse to actively pushing someone than to
flipping a switch [33], and people are certainly more averse to sacrificing themselves
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Fig. 6 A cartoon given to participants showing the layout of the experimental scenario and the four possi-
ble options. Clockwise from top (surrounding the face symbol) these are: sacrificing oneself, flipping the
switch, inaction, and pushing the character at B onto the main track. Locations A and B are instantiated by
particular characters depending on the context.

than doing either of the former. However, depending on how much one values the
character on the main track’s life, one might be prepared to perform a less desirable
action in order to increase their chance of survival.

In answering (Q1), as well as the primary log-likelihood metric recorded in Table
2, for illustrative purposes we also investigate how well our model serves as a rep-
resentation of the aggregated decision preferences of participants by calculating how
likely the system would be to make particular decisions in each of the 30 contexts
and comparing this with the average across participants in the survey. For reasons of
space we focus here on a representative subset of these comparisons: namely, the five
possible scenarios in which the best friend character is on the main track (see Figure
7). In general, the model’s predictions are similar to the answers given in the sur-
vey, although the effect of smoothing our distribution during learning is noticeable,
especially due to the fact that the model was learnt with relatively few data points.
Despite this handicap, the most likely decision in any of the 30 contexts according
to the model is in fact the majority decision in the survey, with the ranking of other
decisions in each context also highly accurate.

Unlike our other two experiments, the survey data does not explicitly contain
any utility information, meaning our system was forced to learn a utility function by
using the probability distribution encoded by the PSDD. Within the decision-making
scenarios we presented, it is plausible that the decisions made by participants were
guided by weights that they assigned to the lives of each of the six characters and to
their own life. Given that each of these is captured by a particular outcome variable
we chose to construct a utility function that was linear in said variables. We also chose
to make the utility function insensitive to context, as we would not expect how much
one values the life of a particular character to depend on which track that character
was on, or whether they were on a track at all.

For (Q2), with no existing utility data to compare our learnt function, we inter-
preted the survival rates of each character as the approximate weight assigned to their
lives by the participants. While the survival rate is a non-deterministic function of
the decisions made in each context, we assume that over the experiment these rates
average out enough for us to make a meaningful comparison with the weights learnt
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Fig. 7 A comparison of the decisions made by participants and the predictions of our model in each of the
five scenarios in which the best friend character is on the main track (A).

by our model. A visual representation of this comparison can be seen in Figure 8. It
is immediately obvious that our system has captured the correct utility function to a
high degree of accuracy. With that said, our assumption about using survival rates as
a proxy for real utility weights does lend itself to favourable comparison with a utility
function learnt from a probability distribution over contexts, decisions, and outcomes
(which therefore includes survival rates). Given the setup of the experiment, however,
this assumption seems justified and, furthermore, to be in line with how most of the
participants answered the survey.
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Fig. 8 A comparison between the average survival rates of the seven characters (including the participants
in the survey), normalised to sum to one, and the corresponding utility function weights learnt by our
system.
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Because of the symmetric nature of the set of contexts in our experiment, the
probability of a particular character surviving as a result of a particular fixed action
across all contexts is just the same as the probability of that character not surviving.
Hence in answering (Q3) we use our system’s feature of being able to accept particu-
lar distributions Pr′ over the contexts in which we wish to attribute blame, allowing us
to focus only on particular scenarios. Regarding the first part of (Q3), clearly in any
of the possible contexts one should not be blamed at all for the death of the character
on the main track for flipping the switch (F) as opposed to inaction (I), because in
the latter case they will die with certainty, but not in the former.8 Choosing a scenario
arbitrarily to illustrate this point, with one person on the side track and five people
on the main track, we have dbN(F, I,¬L5) = 0 and dbN(F,¬L5) = 0.307 (with our
measure of cost importance N = 0.762, 1.1 times the negative minimum cost of any
action).

For the second part of (Q3), consider the scenario in which there is a large crowd
of a hundred or so people on the main track, but one is unable to tell from a distance
if the five or so people on the side track are strangers or one’s family. The more
likely it is that the family is on the side track, the more responsible one is for their
deaths (¬LFa) if one, say, flips the switch (F) to divert the train. Conversely, we also
expect there to be less blame for the deaths of the 100 people (¬L100) say, if one
did nothing (I), the more likely it is that the family is on the side track (because
the cost, for the participant at least, of diverting the train is higher). We compare
cases where there is a 0.3 or 0.6 probability that the family is on the side track and
for all calculations use the cost importance measure N = 1. Therefore, not only
would we expect the blame for the death of the family to be higher when pulling
the switch in the latter case, we would expect the value to be approximately twice as
high as in the former case. Accordingly, we compute values dbN(F,¬LFa) = 0.264
and dbN(F,¬LFa) = 0.554 respectively. Similarly, when considering blame for the
deaths of the 100 people due inaction, we find that dbN(I,¬L100) = 0.153 in the
former case and that dbN(I,¬L100) = 0.110 in the latter case (when the cost of
performing another action is higher).

7 Discussion

We begin this section by briefly revisiting two of the technical points in Section 3.1
and Section 3.2: a) structural equations can be partially encoded in PSDDs using
propositional formulae; and b) the specific sorts of causal queries we make in our
framework can be reduced to a number of probabilistic queries. In particular, we
wish to highlight the fact that these claims are independent and used to support inde-
pendent arguments. The first claim supports our argument that PSDDs are a natural
choice of model due to (amongst other features) their relation to causal graphical
models and the structural equations that they represent (when compared to, say, al-
ternatives such as SPNs [19]). The second claim supports our argument that PSDDs
(or probabilistic models more generally) are sufficient to answer the particular set of

8 Note that this is not to say one would not be blameworthy when compared to all other actions as one
could, for example, have sacrificed oneself instead, saving all other lives with certainty.
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causal queries within the particular class of sequential decision-making scenarios we
consider, and are thus an appropriate choice of model in which to embed the formal
framework of HK. Further, the truth of the second claim is what justifies our focus on
computing probabilistic quantities instead of the process of causal discovery which,
as noted earlier, is highly non-trivial. Admittedly, such learning regimes would be
interesting and useful in our context, and we plan to look into this in future work.

As well the technical assumptions discussed in Section 3, our work also rests on
several key philosophical assumptions worthy of discussion. These are in turn linked
to our motivations and suggestions for potential applications of the type of system we
exhibit. We discuss each of these aspects with respect to the features and abilities of
our system below.

Most importantly, we wish to draw attention to what we consider an interesting
parallel between the use of statistical relational models that can encode both logical
constraints or structures as well as learnt distributions (which can in turn be used to
deduce preferences), and normative ethical theories that make use of some notion
of both deontological rules (e.g. it is forbidden to kill another human being) and the
principle of utility maximisation. While these two philosophical approaches are often
contrasted with each other, it is plausible and not infrequently suggested that human
beings make use of both in their everyday moral reasoning [34]. For example, this
helps to explain why many people consider it morally permissible to flip a switch
to kill one person and save five, but not to push someone to their death in order to
save five others (as it would violate a deontological rule forbidding killing that is not
violated in the first, more ‘indirect’ case) [33]. This parallel suggests that such models
(including PSDDs) may have an intrinsic advantage when it comes to capturing the
complexities of moral reasoning. It is perhaps also possible that biased data used for
learning could be more easily identified (through the use of complex logical queries)
or perhaps restricted (through the use of logical constraints) by these models, though
this is of course a highly non-trivial problem.

With respect to our specific embedding and implementation, we can easily con-
strain our distribution and thus the utility function that results (for example, in the
trolley problems experiment we could have encoded logical constraints such that any
human life should be prioritised over the life of a pet). Bounding our models before
learning in this way corresponds to a hybrid between the top-down and bottom-up
approaches defined by Allen et al. which we believe seems intuitively more promis-
ing and flexible than using either technique exclusively [35]. The possibility of such
a hybrid system incorporating both statistical and symbolic methods has also been
discussed elsewhere [26], though as far as we are aware our system represents the
first implemented example of this paradigm. A less immediate but more general fea-
ture is our ability to tractably query an unconstrained model in order to check with
what probability certain rules are followed, based on contexts and (possibly) previous
decisions.

Though the primary purpose of our models is in representing moral decision-
making scenarios for tractable reasoning about decisions, outcomes, and blame, they
can also be used to make such decisions tractably, using our implemented MPE al-
gorithm. However, we do not wish to suggest blindly advocating the automation of
moral judgements. In our view, it is crucial that AI systems act in line with human



26 Lewis Hammond, Vaishak Belle

values and preferences. Our suggestion in this work is merely that imbuing such sys-
tems with the ability to reason about moral value, blame, and intentionality is one
possible step towards this goal.9 Our motivation derives from HK (and others) in our
desire to provide a shared computational framework for representing and reasoning
about moral judgements that may help in our quest to build systems that act ethi-
cally; the difference being that we contribute a concrete, end-to-end implementation
and investigation of such a framework as opposed to an underlying logical theory.

As autonomous systems become more widely and deeply embedded within so-
ciety, and as the quantity and significance of their interactions with (or on behalf
of) humans grows, so too, we believe, will the need for a computationally realised
framework of the kind we present here [1,36,26], whether or not it is used to make
or merely reason about moral decisions. We wish to remark, however, that if this
framework were employed in the wrong way, such as in the unchecked automation
of moral decision-making tasks, then it could undoubtedly lead to unethical conse-
quences (see, for example, [37] in opposition to autonomous weapons systems). With
that said, it would also be naı̈ve to think that the decisions made by current and future
autonomous systems are without moral consequence, and so the important discussion
surrounding these issues is one that we believe will undoubtedly continue and hope
to encourage through our work here.

Though there are many other related ethical considerations that warrant discus-
sion, a detailed investigation of such issues is outside the scope of our current work,
and so we conclude this section with suggestions for possible applications of our work
(or extensions thereof). Beginning with our three experiments: the first represents a
case in which, after learning from previous expert behaviour or having certain param-
eters specified in advance, a system like ours could, for example, be used to quantify
culpability in the event of a patient’s death due to medical error; in the second exper-
iment we could use a similar model for the process of After Action Review within a
team training setting (as proposed in [38]); and the models extracted during our third
experiment could be used for comparison against learnt models from specific indi-
viduals or other populations, and potentially also what Etzioni and Etzioni describe
as ‘ethics bots’: personalised models learnt from data that encode moral preferences
and may be transferred between domains [3].

In addition, autonomous systems that can reason accurately and tractably about
blame and moral responsibility could see use in ensuring politeness in natural lan-
guage generation [39], creating shared understanding in collaborative tasks between
multiple human and/or artificial agents (though see [5,40] for possible negative side
effects of autonomous systems blaming humans), overcoming human cognitive biases
in legal, military, or other high-stakes scenarios [41], and many others.

9 It is a separate but potentially interesting question to ask whether a group of purely artificial agents
might benefit (say, in their level of coordination) from such abilities.
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8 Related Work

Our work here is differentiated from related work in two main ways: jointly address-
ing the automated learning of models of moral scenarios, and tractable reasoning.
We discuss other efforts below.

As mentioned before, we do not motivate new definitions for moral responsibil-
ity here but draw on HK which, in turn, is based upon prior work done by Halpern
with Chockler [7] and with Pearl [8]. Their framework is also related to the inten-
tions model of Kleiman-Weiner et al. which considers predictions about the moral
permissibility of actions via influence diagrams [42], though unlike our efforts here
all of these works are primarily theoretical and there is no emphasis on learning or
tractability. In fact, the use of tractable architectures for decision-making itself is re-
cent (see, for example, [43,44]). Choi et al. learn PSDDs over preference rankings
(as opposed to decision-making scenarios more generally) [11], though unlike ours
their approach does not take account of different preferences in different contexts and
does not capture the causal elements we adopt from HK.

Just as the focus of this work is not to provide a new definition of moral responsi-
bility, it is equally not to introduce a new tractable probabilistic architecture. Instead,
we adopt PSDDs which offer a useful combination of learning in the presence of
logical (and therefore possibly moral) constraints and then tractably computing the
many quantities needed for the blameworthiness framework of HK. With that said,
this does not mean that other models could not have been used. In principle, any
tractable fragment from probabilistic logic learning is perhaps applicable to our work
here: we initially considered a decision-theoretic instance of SPNs [44], but chose not
to pursue this further due to the focus on making decisions as opposed to reasoning
about decisions, and the lack of an available code base. We could also perhaps have
leveraged a high-level language like DTProbLog [45], but we note that there is the
exponential cost of compiling such a language to a circuit, and thus we wished to
work with the circuit directly.

Markov Logic Networks (MLNs) could have been considered, and when their
semantics are viewed from the perspective of weighted model counting, they are
equivalent to the task solved by probabilistic circuits [46]. Analogously, a tractable
fragment of MLNs could have been considered, as could Probabilistic Soft Logic
which supports convex optimisation during inference but a fuzzy/t-norm type seman-
tics [47]. The main challenge in extending our work for any of these other proposal
languages would be identifying an embedding from HK to the target language, but
once that is resolved, we would expect to see similar results (insofar as the models
support the class of queries required in order to tractably compute blameworthiness).
Thus, we do not claim that PSDDs are the only route to the contributions in this
work, though their tractable nature, as well as the partial encoding of the structural
equations through the use of logical constraints, allow a clean practical perspective
on HK, and coupled with parameter estimation and utility learning, we obtain the
corresponding implemented framework.

An important part of learning a model of moral decision-making is in learning
a utility function. This is often referred to as inverse reinforcement learning [48] or
Bayesian inverse planning [49] and is closely related to the field of preference elici-
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tation. Our current implementation considers a simple approach for learning utilities
(similar to that of Nielsen and Jensen [50]), but more involved paradigms such as
those above could indeed have been used. Existing work in these areas, however,
typically has the extraction of utilities as a final goal, whereas in our work such utili-
ties are merely inputs for moral reasoning processes. Learning preferences from sub-
optimal behaviour is an important challenge here that we hope to take into account in
future work. We refer the interested reader to the work of Evans et al. for details of
one attempt to tackle this problem [25]. Recent work by Jentzsch et al. indicates that
language corpora may form suitable resources from which data about ethical norms
and moral decision-making may be extracted, which may help in our ability to learn
larger and more complex models in future [51].

Our contributions here are related to the body of work surrounding MIT’s Moral
Machine project [32]. For example, Kim et al. [52] build on an earlier theoretical
proposal [53] by developing a computational model of moral decision-making whose
predictions they test against Moral Machine data. Their focus is slightly different
to ours, as they attempt to learn abstract moral principles via hierarchical Bayesian
inference. Although our framework can be used to these ends, it is also flexible with
respect to different contexts, and allows constraints on learnt models. Noothigattu et
al. develop a method of aggregating the preferences of all participants (this, while not
using techniques that are quite as sophisticated, is a secondary feature of our system
which is strictly more general) in order to make a given decision [54]. However,
due to the large numbers of such preference orderings, tractability issues arise and
so sampling must be used. In contrast, inference in our models is both exact and
tractable.

There have also been many purely symbolic approaches to creating models of
moral reasoning within autonomous systems. As in our own work, the HERA project
[55] is also based on Halpern and Pearl’s structural equations framework for causal
and counterfactual reasoning [8]. The system is similarly broad in that it allows for
the implementation of several kinds of (rule-based) moral theory to be captured, how-
ever their models and utility functions are hand-crafted (as opposed to learnt from
data) and so lack the flexibility, tractability, and scalability of our approach. Mao and
Gratch also make use of causal models to produce categorical judgements of moral
responsibility based on psychological attribution theory [56]. While their focus is on
the multi-agent setting (and again, does not include any learning), reasoning in such
domains is also supported by the underlying theory of HK and would thus form a
natural extension of our work in the future.

GENETH uses inductive logic programming to create generalised moral princi-
ples from the judgements of ethicists about particular ethical dilemmas, the system’s
performance being evaluated using an ‘ethical Turing test’ [57]. This work, however,
can be seen as less general than our approach in that they assume preferences to be
ordinal (as opposed to cardinal) and actions to be deterministic (as opposed to prob-
abilistic). Their need for feature engineering to extract ethically relevant facts from
each situation is also bypassed by our system, though it is plausible that adding such
variables to our models could improve results. Further symbolic approaches (as op-
posed to our own which forms a hybrid between symbolic and statistical methods)
include the ETHAN language, the properties of agents defined by which are also
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amendable to formal verification [58], and work on simulating then evaluating the
moral consequences of a robot’s actions as part of its ‘ethical control layer’ [59].

Finally, there are a number of works that aim to provide overviews of or motiva-
tions for broad classes of algorithms that seek to address similar problems to those
in our own work, though given their nature these works focus more on breadth than
the deeper analysis of a single framework which we provide here. A discussion of
strategies for creating moral decision-making frameworks for autonomous systems is
discussed in Conitzer et al. [1], and similar considerations regarding hybrid collective
decision-making systems are made by Greene et al. [60]. One alternative proposal,
not discussed in either of these works, is made by Abel et al. and suggests the use
of reinforcement learning as a framework for ethical decision-making [61]. Recent
work by Shaw et al. [62] has sought to address the tension between learnt models
of moral decision-making and provable guarantees, in a work not dissimilar to our
own. A comprehensive survey of issues surrounding the intersection of ethics and
autonomous systems is provided by Charisi et al. [26]. We refer the reader to these
works for more discussions.

9 Conclusion

In this work we present the first implemented hybrid (between data-driven and rule-
based methods) computational framework for moral reasoning, which utilises the
specification of decision-making scenarios in HK, and at the same time exploits many
of the desirable properties of PSDDs (such as tractability, semantically meaningful
parameters, and the ability to be both learnt from data and include logical constraints).
The implemented system is flexible in its usage, allowing various inputs and speci-
fications. In general, the models in our experiments are accurate representations of
the distributions over the moral scenarios that they are learnt from. Our learnt utility
functions, while simple in nature, are still able to capture subtle details and in some
scenarios are able to match human preferences with high accuracy using very little
data. With these two elements we are able to generate blameworthiness scores that
are, prima facie, in line with human intuitions.

We hope that our work here goes some way towards bridging the gap between the
existing philosophical work on moral responsibility and the existing technical work
on reasoning about decision-making in autonomous systems. In future we would like
to expand the application of our implementation to more complex domains in order
to fully exploit and evaluate its tractability. We are also interested in investigating
how intentionality can be modelled within our embedding (a natural extension to the
work presented here, given the close connection between this concept and blamewor-
thiness), and the possibility of formally verifying certain properties of our models.
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A Further Experiments

As well as the Trolley Problems experiment in Section 6.2, we also applied our frame-
work to data from moral decision-making scenarios in two other illustrative domains:
Lung Cancer Staging and Teamwork Management. In the following subsections of
this appendix we provide the details and results of these experiments.

A.1 Lung Cancer Staging

We use a synthetic dataset generated with the lung cancer staging influence diagram
given in [29]. The data was generated assuming that the overall decision strategy
recommended in the original paper is followed with some high probability at each
decision point. In this strategy, a thoractomy is the usual treatment unless the patient
has mediastinal metastases, in which case a thoractomy will not result in greater life
expectancy than the lower risk option of radiation therapy, which is then the preferred
treatment. The first decision made is whether a CT scan should be performed to test
for mediastinal metastases, the second is whether to perform a mediastinoscopy. If
the CT scan results are positive for mediastinal metastases then a mediastinoscopy is
usually recommended in order to provide a second check, but if the CT scan result
is negative then a mediastinoscopy is not seen as worth the extra risk involved in
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the operation. Possible outcomes are determined by variables that indicate whether
the patient survives the diagnosis procedure and survives the treatment, and utility is
measured by life expectancy.

For (Q1) we again measure the overall log likelihood of the models learnt by our
system on training, validation, and test datasets. In particular, our model is able to
recover the artificial decision-making strategy well (see Figure 9); at most points of
the staging procedure the model learns a very similar distribution over decisions, and
in all cases the correct decision is made the majority of times.

Answering (Q2) here is more difficult as the given utilities are not necessarily
such that our decisions are linearly proportional to the expected utility of that de-
cision. However, our strategy was chosen so as to maximise expected utility in the
majority of cases. Thus, when comparing the given life expectancies with the learnt
utility function, we still expect the same ordinality of utility values, even if not the
same cardinality. In particular, our function assigns maximal utility (1.000) to the
successful performing of a thoractomy when the patient does not have mediastinal
metastases (the optimal scenario), and any scenario in which the patient dies has
markedly lower utility (mean value 0.134).
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Fig. 9 A comparison between the five probability values specified in our data generation process and the
corresponding values learnt by our system from this data.

Regarding the first part of (Q3), one case in which we have blameworthiness
scores of zero is when performing the action being judged is less likely to result
in the outcome we are concerned with than the action(s) we are comparing it to.
The chance of the patient dying in the diagnostic process (¬S DP) is increased if
a mediastinoscopy (M) is performed, hence the blameworthiness for such a death
due to not performing a mediastinoscopy should be zero. As expected, our model
assigns dbN(¬M, M,¬S DP) = 0. To answer the second part of (Q3), we show that
the system produces higher blameworthiness scores when a negative outcome is more
likely to occur (assuming the actions being compared have relatively similar costs).
For example, in the case where the patient does not have mediastinal metastases then
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the best treatment is a thoractomy, but a thoractomy will not be performed if the result
of the last diagnostic test performed is positive. The specificity of a mediastinoscopy
is higher than that of a CT scan, hence a CT scan is more likely to produce a false
positive and thus (assuming no mediastinoscopy is performed as a second check)
lead to the wrong treatment.10 In the case where only one diagnostic procedure is
performed we therefore have a higher degree of blame attributed to the decision to
conduct a CT scan (0.013) as opposed to a mediastinoscopy (0.000), where we use
N = 1.

A.2 Teamwork Management

Our second experiment uses a recently collected dataset of human decision-making
in teamwork management [30]. This data was recorded from over 1000 participants
as they played a game that simulates task allocation processes in a management en-
vironment. In each level of the game the player has different tasks to allocate to a
group of virtual workers that have different attributes and capabilities. The tasks vary
in difficulty, value, and time requirements, and the player gains feedback from the
virtual workers as tasks are completed. At the end of the level the player receives a
score based on the quality and timeliness of their work. Finally, the player is asked
to record their emotional response to the result of the game in terms of scores corre-
sponding to six basic emotions. We simplify matters slightly by considering only the
self-declared management strategy of the player as our decisions. Within the game
this is recorded by five check-boxes at the end of the level that are not mutually ex-
clusive, giving 32 possible overall strategies. These strategy choices concern methods
of task allocation such as load-balancing (keeping each worker’s workload roughly
even) and skill-based (assigning tasks by how likely the worker is to complete the task
well and on time), amongst others. We also measure utility purely by the self-reported
happiness of the player, rather than any other emotions.

As part of our answer to (Q1) we investigate how often the model would employ
each of the 32 possible strategies (where a strategy is represented by an assignment
of values to the binary indicator decision variables) compared to the average par-
ticipant (across all contexts), which can be seen in Figure 10. In general the learnt
probabilities are similar to the actual proportions in the data, though noisier. The dis-
crepancies are more noticeable (though understandably so) for decisions that were
made very rarely, perhaps only once or twice in the entire dataset. These differences
are also partly due to smoothing (i.e. all strategies have a non-zero probability of
being played).

For (Q2) we use the self-reported happiness scores to investigate our assump-
tion that the number of times a decision is made is (linearly) proportional to the
expected utility based on that decision. In order to do this we split the data up based
on the context (game level) and produce a scatter plot (Figure 11) of the proportion
of times a set of decisions is made against the average utility (happiness score) of
that decision. Overall there is no obvious positive linear correlation as our original

10 Note that even though a mediastinoscopy has a higher cost (as the patient is more likely to die if it is
performed), it should not be enough to outweigh the test’s accuracy in this circumstance.
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Fig. 10 The log probability assigned to each possible decision strategy across all contexts by our model,
compared to the log proportion of times each strategy was used in the six levels of the game by participants.
Strategies are sorted in ascending order by their proportion of use in level 1 and gaps in each plot represent
strategies never used in that game level.
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Fig. 11 Each point is a decision strategy in a level of the game; we compare the proportion of times it is
used against the average self-reported utility that results from it. Each line is a least-squares best fit to the
points in that level.

assumption would imply, although this could be because of any one or combination
of the following reasons: players do not play enough rounds of the game to find out
which strategies reliably lead to higher scores and thus (presumably) higher utilities;
players do not accurately self-report their strategies; or players’ strategies have rela-
tively little impact on their overall utility based on the result of the game. We recall
here that our assumption essentially comes down to supposing that people more often
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make decisions that result in greater utilities. The eminent plausibility of this state-
ment, along with the relatively high likelihood of at least one of the factors in the list
above means we do not have enough evidence here to refute the statement, although
certainly further empirical work is required in order to demonstrate its truth.

Investigating this discrepancy further, we learnt a utility function (linear and
context-relative) from the data and inspected the average weights given to the out-
come variables (see right plot in Figure 12). A correct function should place higher
weights on the outcome variables corresponding to higher ratings, which is true for
timeliness, but not quite true for quality as the top rating is weighted only third high-
est. We found that the learnt utility weights are in fact almost identical to the distri-
bution of the outcomes in the data (see left plot in Figure 12). Because our utility
weights were learnt on the assumption that players more often use strategies that will
lead to better expected outcomes, the similarity between these two graphs adds fur-
ther weight to our suggestion that, in fact, the self-reported strategies of players have
very little to do with the final outcome.
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Fig. 12 A comparison of the learnt utility weights for each of the outcome variables (to the right) and the
proportion of times each outcome occurs in the data (to the left).

To answer (Q3) we examine cases in which the blameworthiness score should be
zero, and then compare cases that should have lower or higher scores with respect
to one another. Once again, comprehensive descriptions of each of our tested queries
are omitted for reasons of space, but here we present some representative examples.11

Firstly, we considered level 1 of the game by choosing an alternative distribution Pr′

over contexts when generating our scores. Here a player is less likely to receive a
low rating for quality (Q1 or Q2) if they employ a skill-based strategy where tasks
are more frequently allocated to better workers (S ). As expected, our system returns
dbN(S ,¬S , Q1 ∨ Q2) = 0. Secondly, we look at the timeliness outcomes. A player
is less likely to obtain the top timeliness rating (T5) if they do not use a strategy
that uniformly allocates tasks (U) compared to their not using a random strategy

11 In all of the blameworthiness scores below we use the cost importance measure N = 1.
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of allocation (R). Accordingly, we find that dbN(¬U,¬T5) > dbN(¬R,¬T5), and
more specifically we have dbN(¬U,¬T5) = 0.002 and dbN(¬R,¬T5) = 0 (i.e. a
player should avoid using a random strategy completely if they wish to obtain the top
timeliness rating).

B Datasets

The full set of data, source code, and other supplementary materials are included
within a package which will be made available online upon publication of this work
[13]. Here we provide brief summaries of the three datasets used in our experiments,
including the variable encoding used for each domain and the underlying constraints.

Number of data points 100000
Number of variables 12
Context variables Mediastinal Metastases (MM), CT Would Be Positive (CT+),

CT Would Be Negative (CT−), Mediastinoscopy Would Be Pos-
itive (M+), Mediastinoscopy Would Be Negative (M−)

Decision variables (D) Perform CT (CT ), Perform Mediastinoscopy (M)
Outcome variables (O) No CT Performed (CTN/A), No Mediastinoscopy Performed

(MN/A), Thoractomy Performed (T ), Diagnosis Procedures
Survived (S DP), Treatment Survived (S T )

Constraints (CT+ ∨CT−)↔ CT
CTN/A ↔ ¬CT
(M+ ∨M−)↔ M
MN/A ↔ ¬M
M− → T
M+ → ¬T
(CT− ∧¬M)→ T
(CT+ ∧¬M)→ ¬T
¬S DP → M
¬(CT+ ∧CT−)
¬(M+ ∧M−)
¬S DP → ¬S T

Model count 52
Utilities given? Yes (life expectancy)

Table 3 A summary of the lung cancer staging data used in our first experiment.
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Number of data points 7446
Number of variables 21
Context variables (X) Level 1 (L1), ... , Level 6 (L6)
Decision variables (D) Other (O), Load-balancing (L), Uniform (U), Skill-based (S ),

Random (R)
Outcome variables (O) Timeliness 1 (T1), ... , Timeliness 5 (T5), Quality 1 (Q1), ... ,

Quality 5 (Q5)
Constraints

∨
i∈{1,...,6} Li

Li → ¬
∨

j∈{1,...,6}\i L j∀i ∈ {1, ..., 6}∨
i∈{1,...,5} Ti

Ti → ¬
∨

j∈{1,...,5}\i T j∀i ∈ {1, ..., 5}∨
i∈{1,...,5} Qi

Qi → ¬
∨

j∈{1,...,5}\i Q j∀i ∈ {1, ..., 5}
Model count 4800
Utilities given? Yes (self-reported happiness score)

Table 4 A summary of the teamwork management data used in our second experiment.

Number of data points 360
Number of variables 23
Context variables (X) One Person On Track A (A1), ... , Family On Track A (AFa),

One Person On Track B (B1), ... , Family On Track B (BFa)
Decision variables (D) Inaction (I), Flip Switch (F), Push B (P), Sacrifice Oneself (S )
Outcome variables (O) One Person Lives (L1), ... , Family Lives (LFa), You Live (LY )
Constraints

∨
i∈{1,...,Fa} Ai∨
i∈{1,...,Fa} Bi
¬(Ai ∧ Bi)∀i ∈ {1, ..., Fa}
Ai → ¬

∨
j∈{1,...,Fa}\i A j∀i ∈ {1, ..., Fa}

Bi → ¬
∨

j∈{1,...,Fa}\i B j∀i ∈ {1, ..., Fa}∨
D∈{N,F,P,S } D

D→ ¬
∨

D′∈{N,F,P,S }\D D′

(Ai ∧ N)→ ¬Li∀i ∈ {1, ..., Fa}
(Bi ∧ N)→ Li∀i ∈ {1, ..., Fa}
Li → (Ai ∨ Bi)∀i ∈ {1, ..., Fa}
(S ∧ (Ai ∨ Bi))→ Li∀i ∈ {1, ..., Fa}
LY ↔ ¬S
(Li ∧ (P∨ F))→ ¬

∨
j∈{1,...,Fa}\i L j∀i ∈ {1, ..., Fa}

(¬Li ∧ (P∨ F))→
∨

j∈{1,...,Fa}\i L j∀i ∈ {1, ..., Fa}
Model count 180
Utilities given? No

Table 5 A summary of the trolley problem data used in our third experiment.
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