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Abstract. The field of statistical relational learning aims at unifying logic and
probability to reason and learn from data. Perhaps the most successful paradigm
in the field is probabilistic logic programming (PLP): the enabling of stochas-
tic primitives in logic programming. While many systems offer inference capa-
bilities, the more significant challenge is that of learning meaningful and inter-
pretable symbolic representations from data. In that regard, inductive logic pro-
gramming and related techniques have paved much of the way for the last few
decades, but a major limitation of this exciting landscape is that only discrete
features and distributions are handled. Many disciplines express phenomena in
terms of continuous models.

In this paper, we propose a new computational framework for inducing proba-
bilistic logic programs over continuous and mixed discrete-continuous data. Most
significantly, we show how to learn these programs while making no assumption
about the true underlying density. Our experiments show the promise of the pro-
posed framework.

1 Introduction

The field of statistical relational learning (SRL) aims at unifying logic and probability
to reason and learn from relational data. Perhaps the most successful paradigm here is
probabilistic (logic) programming (PLP): the enabling of stochastic primitives in (logic)
programming, which is now increasingly seen to provide a declarative basis to complex
machine learning applications [20, 14].

While many PLP systems offer inference capabilities [4, 14,31], the more difficult
task is that of learning meaningful and interpretable symbolic representations from data.
Parameter learning attempts to obtain the probabilities of atoms from observational
traces (e.g., number of heads observed in a sequence of coin tosses). Structure learning
goes a step further and attempts to learn deterministic or probabilistic rules (that is,
logic programs) from data. In that regard, inductive logic programming (ILP) and first-
order logic (FOL) rule learning have paved much of the way for the last few decades
[32, 38, 13], with important applications for Web and biomedical data [44, 12], among
others.

* This work is partly supported by the EPSRC grant Towards Explainable and Robust Statistical
Al: A Symbolic Approach.
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A major limitation of this exciting landscape is that only discrete features and distri-
butions are handled. This is somewhat surprising, as many disciplines express phenom-
ena in terms of continuous models. The heart of the matter is that inference is already
very challenging. Indeed, inference schemes often assume parametric families (e.g.,
Gaussians) [28, 22], or are approximate offering asymptotic guarantees that only ensure
correctness in the limit [33]. The learning of models is analogously restricted, as learn-
ing uses inference as a sub-routine [25]. Consequently, there is very little treatment on
continuous distributions, both on the inference and learning fronts. (We discuss some
notable exceptions in the penultimate section.)

In this work, we study the problem of parameter and structure learning for PLPs
over continuous and mixed discrete-continuous data. Critically, we will not assume
that these distributions are taken from known parametric families. To the best of our
knowledge, this is the first such attempt and we hope it will make probabilistic knowl-
edge representation systems more widely applicable for uncertain hybrid data. In par-
ticular, we propose a computational framework for inducing probabilistic logic pro-
grams over continuous and mixed discrete-continuous data. Rather than needing to de-
fine a new learning paradigm, we show that it is possible to leverage existing structure
learners by appealing to the formulation of weighted model integration (WMI). WMI
has been proposed recently as a computational abstraction for inference in discrete-
continuous domains [6]. It generalizes weighted model counting [9], which is used for
inference in ProbLog [18], for example. The resulting system is then a new dialect of
the popular PLP language ProbLog [18], which we call WMIProbLog. On the one hand,
WMIProbLog supports learning with hybrid distributions, and on the other, it enables
efficient exact inference. We remark that our framework is very general, and could easily
be adapted to other PLP languages.

2 Framework

Our framework consists of a generic weight and structure learner for hybrid data (i.e.,
data containing continuous and discrete attributes), to yield weighted hybrid atoms and
thus, hybrid programs. As mentioned above, our approach piggybacks on existing struc-
ture learners, including techniques for density estimation that impose no restrictions on
the true density that generated the data.

Overall, our algorithmic pipeline is as follows:

1. Intervals that best represent the data are constructed and polynomial weights for
these intervals are learned, based on algorithms for basis splines. Basically, the at-
tributes are split into mutually exclusive intervals. Then, a piecewise polynomial
(PP) approximation of the density is learned by the algorithm with the understand-
ing that each piece represents the probability density function (PDF) for that inter-
val. The constructed intervals lead to “invented” predicates.

2. Relations between these atoms are constructed as clauses, subsequently yielding
hybrid probabilistic programs. That is, rules to relate the newly invented atoms are
induced by adapting the inputs of two discrete probabilistic FOL rule learners.

3. Finally, the atoms, weights and rules are combined in a PLP language equipped
with exact inference via WMI, which we call WMIProbLog. Exact inference is
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made possible by means of the PP representation, which admits efficient integra-
tion [3]. This is a major contribution in itself because most SRL languages with
continuous distributions only support approximate inference over weak asymptotic
guarantees [34].

The organization of the paper is as follows. We discuss the technical background
for realizing the above steps, before turning to empirical evaluations, related work and
conclusions.

2.1 Learning Weighted Atoms

We present a fully unsupervised approach to jointly learn intervals and their piecewise
polynomial approximate densities from data. Our objective is defined as follows:

Definition 1 (Weighted Atom Construction) Given:

1. a finite set of numeric data points E = {xi, ..., x,} where t(x;) is a ground fact for
the predicate t.3

2. A partition scheme E\, ..., E; that partitions E into | parts where U E; = E, E,NE; =
Oand E; C E.

3. An unknown distribution for each partition i, that is, f; : E; — Ry such that

i Jp fi= L

4. A hypothesis space H that consists of piecewise polynomials where H € H is of the
Jorm (hy, ..hy), such that ¥_, [, h; = 1.

5. A loss function measuring the ’loss/granularity tradeoff for a candidate density-
estimator h;: loss(h;, f,) for each i.*

Find: A hypothesis H such that loss(f;, h;) is minimized for each i.

The goal of this learner is to find an optimal piecewise polynomial density estima-
tion that is as close to the unknown underlying distribution as possible. As a result,
we obtain new weighted atoms of the form: h; :: t_i(X) « t(X), E;(X) for each i. For
example, we might learn the following for the height(X) predicate over the [60, 91]
region: X2/3 :: height_60_91(X) « height(X),X € [60, 91]. This says that the atoms
whose groundings lay between 60 and 91 such as height_60_91(60.4) have a prob-
abilistic density given by the polynomial X2/3. We provide an algorithm that induces
such weighted predicates. It involves two steps: partitioning and density estimation.

Step 1: Partitioning Partitioning refers to dividing the range of a continuous variable
into [ mutually exclusive intervals according to selected criteria. Our motivation is to
capture complex continuous data by offloading the continuity to the weight functions

3 Imagine, for example, the predicate height(X) with examples such as
height(60.4),...,height(91.1),...,height(124.6).

4 That is, we may want to penalise very granular representations that are defined over a large
number of intervals and polynomials of a high degree. So, we would like to minimise the loss,
but prefer simpler representations over granular ones.
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so as to yield meaningful hybrid atoms. Suppose X is a real-valued variable — logically,
think of the argument in height(X) — and suppose Xin, - - - » Xmax are the data points we
observe. Partitioning yields I = {E}, ..., E;} with E; = [¢;_1, ¢;]. The set of cutpoints C =
{co, ..., ¢;} determine the interval such that c;_; < c¢;, i € {1,...,1}, cog = Xpin and ¢; = Xpax.
The partiton step, therefore, defines intervals over the domain Q = [X,in, Ximax]-

To restrict the interval search we chose to limit ourselves to two simple but effective
schemes: equal-width and equal-frequency binning [16]. Both methods are regulated
by the same parameter / that determines the number of bins that is considered by the
algorithm.

Step 2: Density Estimation To enable exact inference over hybrid queries, we choose
piecewise polynomial functions to approximate the density. The main advantage is that
such PP densities can be learned from data without any prior information about the den-
sity while still capturing the true density very closely [46]. This section introduces the
problem of approximating densities through PPs and shows how to learn the weighted
atoms from data.

Definition 2 A piecewise function over a real-valued variable x is defined over [ pieces
as:

0 x < o

01(x) co<x<c
6(X) =

0i(x) c1<x<¢

0 x>

where the intervals (expressed using cutpoints) are mutually exclusive, and each 6;(x)
is a polynomial with the same maximum polynomial order k of the form: 6;(x) = bf) +
bi ®* X+ ...+ bj( x x%. In order for 8(x) to form a valid density, the function must be

non-negative and integrate to 1: Zle fc ?il 0;(x)dx = 1.

Our overall objective is to learn PP weights for each of the intervals. That is, sup-
pose f : R — R, is the density of an unknown distribution. We would like to find a
candidate PP hypothesis A, defined over [ intervals such that the polynomial for each in-
terval is of degree at most d. Let P;,4 be the class of /-piecewise degree-d polynomials.
Then, we wish to find m hypotheses h}, ..., " € P4 for each interval i and then se-
lect one that maximises the likelihood of the observed data. Since we also do not know
the optimal degree to choose from, we let the same likelihood criterion also determine
the best degree. For this, we leverage known techniques for learning polynomials [29]
based on basis splines (B-Splines) [11]. B-Splines form a basis in the piecewise polyno-
mial space. By considering linear combinations of splines, more complex polynomials
can be obtained. The combination is adjusted by a set of mixing coefficients. By impos-
ing constraints on these coefficients, polynomials can form a (valid) density: they are
continuous, non-negative, differentiable and integrate to 1.
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The parameters, the degree of the polynomial d and the number of pieces [ are
estimated by the Bayesian information criterion [45, 29]:

log(1X1)
2

BIC(x,8(x)) = L(x | 6(x)) —

where £ denotes the log-likelihood measure. The BIC score is known to be robust and
avoids overfitting the model parameters. Moreover, in our empirical results, it was seen
to favor smaller polynomial ranks which achieve the desired loss/granularity tradeoff
discussed earlier.

Our algorithm is as follows:

1. Input: data points for real-valued variable X, and user-specified values for maxi-
mum number of intervals allowed (maxSize = 40), and maximum degree for poly-
nomials allowed (maxOrder = 9).

2. Sort the points for X in ascending order, initialize B (the best BIC score) to —oo,

and S (the best polynomial structure) to {}.

. Loop the following steps for 2 < [ < maxSize intervals.

. Loop the following steps for partition choices d € {equal width, equal frequency}.

. Obtain cutpoint set C from (X, d).

. Loop the following steps for polynomial degree 1 < k < maxOrder.

. Define temporary variables s and b, the former containing a PP derived from (C, k),

and the latter the BIC score derived from s.

. If b exceeds B, thenlet B=b,and S = s.

9. Return to (6) with the next iteration of & until completion, following which return
to (4) with the next iteration of d until completion, following which return to (3)
with the next iteration of / until completion.

10. Output: (S, B).

NN kW

oo

Theorem 1 The above algorithm realises Definition 1 with BIC measuring the loss and
a PP hypothesis space defined over B-Splines.

2.2 Learning Rules

We now move beyond simply learning weighted atoms to learning complex depen-
dencies between subspaces in a mixed discrete-continuous setting, that is, probabilis-
tic rules for the hybrid atoms. For this purpose, we leverage first-order relational rule
learners. The basic idea is to augment the original dataset that uses continuous vari-
ables (such as height(X)) together with instances of the invented predicates (such as
height_low(X), standing for values in the lower range), as determined by the partition-
ing.

At this stage, there are multiple choices for rule learning. In the simplest setting, we
ignore the learned densities and perform rule learning for one or many target pred-
icate(s). In a more advanced setting, we integrate the rule learner directly into the
pipeline, giving it not only the predicate but also the learned probabilities as input.
Both schemes are considered in the literature. For example, [13] develop a case where
parameters and the structure are optimized jointly. In contrast, [44] apply a determinis-
tic rule-learner in a deterministic setting, and the weights are then obtained in a second
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step. In this section, we explore both settings as an illustration of our framework’s gen-
erality.

Definition 3 (Rule Learning with Hybrid Atoms) Given:

1. (a) a set of examples E, consisting of pairs (x;, p;) where x; is a ground fact for the
invented predicate t and p; is the integrated target probability; or
(b) a set of examples E consisting of {x1, ..., x,} where x; is a ground fact for the
invented predicate t.
2. A background theory B containing information about the examples in the form of a
ProbLog program;
3. A loss function loss(H, B, E), measuring the loss of a hypothesis (set of clauses) H
w.rt Band E;
4. A space of possible clauses L, specified using a declarative bias;

Find: A hypothesis H C Ly such that H = arg minyg loss(H, B, E).

In other words, (1) partitions an attribute into its pieces and adds each piece as an
atom. The two cases decide whether the integrated probability is passed to the rule
learner (e.g. 0.31 :: height_low(X)) or not (e.g. height_low(X)). Then, (2)-(4) realise
standard first-order rule learning with the addition that rules (may) have a probability
assigned to them. The loss function is, of course, determined by the rule learner itself.
ProbFOIL+’s loss function, for example, is based on the error of predictions:

loss(H,B,E)= » |P(HU B x) - pi
xi,pi€E

To compute probabilities for the first case we need to integrate the pieces over their
respective polynomial. For each clause ¢; and each piecewise polynomial density &;(x)
over cutpoints the integral is calculated as [c;_j,¢;], i € {1,...,0]}: p; = f:l 0i(x)dx
where p; is a constant that denotes the probability over the interval [c;_1, ¢;]. The hybrid
atom is now transformed into a discrete atom with a probability mass, that is, p; :: t_i(X).
This is then used instead of the polynomial, and analogously, such a transformation is
applied to all invented predicates.

Once the weights are computed any discrete FOL rule learner can be used to induce
the rules. We utilize ProbFOIL+ [13] and SLIPCOVER [8] for the case of probabilistic
facts versus not. It should be clear that our architecture does not hinge on either learner
and indeed, ProbFOIL+ also handles the case of non-probabilistic facts. Our choices
are to be seen as illustrative of the generality of the framework. We immediately also
get the following

Theorem 2 The algorithmic scheme described above realises both versions of Defini-
tion 3.

Proof. It is immediate to see that by integrating the polynomials, we obtain standard
probabilistic atoms of the form p; :: ¢; , where p; is a number and ¢; is an atom. It
now follows that ProbFOIL+ (and SLIPCOVER respectively) performs rule induction
over probabilistic examples (and non-probabilistic examples respectively) wrt to the
appropriate loss function. O

As a final step, a WMIProbLog program (discussed in the following section) is
obtained that combines the individual relations, their polynomial weights and the rules.
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3 WMIProbLog

Learning rich representations is only appealing when it is also possible to efficiently
query those representations. In particular, PLPs are particularly useful for computing
conditional queries against structured models. Our learning regime culminates in the
synthesis of WMIProbLog programs, a dialect of ProbLog and Hybrid ProbLog [21],
the latter being a generalisation of ProbLog to continuous distributions in parametric
forms. Hybrid ProbLog provides an inference scheme based on interval propagation and
dynamic discretisation. WMIProbLog supports a generic (that is, applies to any density
function approximated in PP form) and efficient exact inference methodology via WMI,
and as will be discussed below, it does not involve any discretisation or rewriting of the
program.

Syntactically, ProbLog vs Hybrid ProbLog vs WMIProbLog can be contrasted as
follows. Consider a simple mixture model in ProbLog, where a biased coin toss yields
either a 50% chance of success or a 25% chance of success:
0.7::heads. 0.5::a. 0.25::b.
tails :- \+heads.

mix :- heads, a.
mix :- tails, b.

To model the chance of success as continuous random variables in Hybrid ProbLog,
we might change the corresponding clauses to:
(X,uniform(0,10))::a(X).
(X,uniform(0,20))::b(X).

mix(X) :- heads, a(X).
mix(X) :- tails, b(X).

In WMIProbLog, in line with our previous sections, those continuous variables over,
say, polynomials of degree O (chosen for ease of presentation, although they can be of
arbitrary degree in general) would be:

0.1::a(X) :- between(0,10,X).
0.05::b(X) :- between(0,20,X).

Querying for mix in the first, and for mix_chance:

mix_chance :- mix(X), between(0,5,X).

in the other programs yields .425, for example.

The semantics of Hybrid ProbLog and WMIProbLog is given by probability distri-
butions over subsets of the facts and values for the numeric variables in the continuous
facts, much like in ProbLog, except that these values may be drawn from an uncount-
able set. (See [21] for details.) But what is perhaps most interesting about WMIProbLog
is that, on the one hand, it is simply a syntactic variant of the Hybrid ProbLog program
in which continuous functions are not necessarily parametric, but on the other, by inte-
grating probabilities as shown earlier, it is also a well-defined ProbLog program.

Theorem 3 Given any WMIProbLog program A there is a syntactically well-defined
ProbLog program A~ such that for all q,e € A~, marginalization and probabilistic
querying have the same values in A and A™.
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Proof. As in the previous theorem, we simply integrate the polynomials to obtain clas-
sic ProbLog probabilistic facts. Clearly, as the query and evidence atoms only refer to
these abstracted facts, the values for marginalisation and conditional querying will be
the same. O

We write g,e € 4~ to mean that the query and evidence atoms only refer to the
abstract program A~, where continuous atoms involving intervals and polynomials and
replaced with integrated probabilities. This idea, of abstracting continuous features is
at the very heart of WMI [6]. However, such a strategy would only allow the most triv-
ial conditional probability computations in general (e.g., probability of mix given that
heads), and would not be able to handle queries like mix_chance. Following Hybrid
ProbLog, one approach would be to syntactically rewrite the program (or dynamically
discretise at computation time), so as to involve every interval mentioned in a query in
a well-defined manner; e.g., split the definition of a(X) as:

.1::aX) :- between(0,5,X).
.1::aX) :- between(5,10,X).

Such a strategy is acceptable formally but can be seen to be a painful exercise.
So, the next observation to make is that if the weights are dropped, we also imme-
diately have a syntactically well-defined ProbLog (and Prolog) program: Given any
WMIProbLog program 4 there is a syntactically well-defined ProbLog program 4* that
is obtained by dropping all the (polynomial and numeric) weights.

What is the advantage of the reduction? To see this, consider that from a computa-
tional perspective, the ProbLog engine proceeds by grounding the input program and
queries, breaking loops if necessary, to ultimately yield a propositional formula [18].
That formula is then compiled to a data structure such as a BDD or d-DNNF [10]. It
is clearly useful to leverage that pipeline. For example, contrast the BDD (below) ob-
tained for the query mix(X), with the one obtained for a query that uses intervals not
explicitly mentioned in the original program:

a_half :- a(X), between(0,5,X).
query(a_half).

Fig. 1: Proofs of the query in BDD form.



Learning Probabilistic Logic Programs over Continuous Data 9

So the only aspect that is needed to be resolved is the computation involving the
densities and weights. This becomes possible because ProbLog’s computational ar-
chitecture is immediately generalisable to any commutative semiring [23].> (For ex-
ample, polynomials with natural number coefficients form a commutative semiring.)
So the densities can be thought of as abstract elements of a semiring, which can then

be symbolically integrated. For example, query(a-half) would be computed: folo 1
Lo 5 (x)dx = fos .1dx = .5. Correspondingly, the probability for mix_chance can be
computed as: [ .1-Ijp5)(x) - .6dx + [ .05 - Lo s5)(x) - 4 = .425.

4 Empirical Evaluations

We now evaluate our framework in this section. We reiterate that, fo the best of our
knowledge, this is the first attempt to articulate a compositional PLP framework for
arbitrarily complex distributions from continuous data. Thus, our goal was to study the
empirical behaviour of the implemented framework on various representational aspects
to illustrate its capabilities.

4.1 Datasets

To carefully monitor the quality of the learned models, we mainly utilized the University
data set [19,41]. Beyond this, we considered many more hybrid datasets from the UCI
repository [15]. The datasets capture domains ranging from health care to marketing,
but not all of them are of the same quality. Some, especially Anneal-U and CRX contain
many missing values. Some others contain duplicate entries.

4.2 Learning Representations

On Piecewise Polynomials This section discusses our observations for the piecewise
polynomial representation learning. The BIC score determined the model parameters
such as the order of polynomials and bins. Table 1 lists statistics for the UCI datasets,
which we contextualise further below.

Q1: How does the polynomial learner compare to other density estimators?
We compared the polynomial learner to Gaussian mixture models (GMM), which is
the current state-of-the-art for density estimation, by appealing to KL divergence in a
controlled experiment. (Unimodal Gaussians are used by most PLPs, e.g, [35].) For the
GMM learner, we use the one from Python sklearn, which also uses the BIC score as
a model selection criterion. As polynomial densities are only defined in Q = [cpo, cp/]
the GMMs need to be normalised for a direct comparison. They are multiplied by a
normalisation constant 1/ fQ f(x)dx.

As it is not feasible to calculate the KL divergence directly for GMMs we chose
a sample size of 10° for a sampling-based approximation. This is calculated as: KL =

5Inan independent and recent effort, Martires et al. [30] have also considered the use of semir-
ings to do WMI inference over propositional circuits.
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Diabetes 576 7 (21) 4.6(9.1)
German 750 3(9) 6.9(6)
German-org 750 3 (25) 9.1 (6.3)
Iris 112 4(5) 3.75@3.753
Table 1: Statistics on UCI datsets and the polynomial learning component. It shows (in order) the
number of training examples, the number of the continuous attributes (number of all attributes in
brackets) the number of created bins separately learned for each attribute and then averaged over
the number of features in the dataset (brackets show number when including missing values) and
the maximum order learned.

Dataset Train # C # Bins (0]
Anneal-U 673 6(39) 10.7(19) 2
Australian 517 5(15) 7.5(7.5) 6
Auto 119 15(26)6.7(8.7) 3
Car 294 609 709.2) 4
Crx 488 6(16) 58 (11.7) 4
4
7
7

n T Expon Gauss MoG-2 MoG-5
100 G 0.10409 0.01028 0.00308 0.12795
P 0.01254 0.00300 0.05699 0.05701
1000 G 0.03633 0.00123 0.00335 0.01550
P 0.00860 0.00228 0.00830 0.01295
10000 G 0.02959 0.00001 0.00083 0.01142
P 0.00147 0.00045 0.00125 0.00419
Table 2: Approximation comparison of different distributions in terms of KL divergence. Here,
n denotes the sample size and 7 the model type. Abbreviations: Gaussian Mixture Model esti-
mation (G) and Piecewise Polynomial density estimation (P). We tested distributions following
Exponential, Gaussian and Mixture of Gaussian with 2 (MoG-2) and 5 (MoG-5) components.

pr(x) log %dx ~ %Zﬁl log % where xj,...,x, ~ p(x). We compared different
types of distributions and sample sizes. The distributions were generated randomly. Not
surprisingly, the polynomial learner performs gradually better than the GMMs as the
true distribution gets less similar to a mixture of Gaussians (see Table 2). What is per-
haps more interesting is how well the PP learner estimates Gaussians. For small sample
sizes, the polynomial learner still outperforms GMMs when approximating a unimodal
Gaussian. When estimating a more complex distribution such as a mixture of five Gaus-
sian our learner fully outperforms the GMM learner even though the underlying distri-
bution is a mixture of Gaussians. This is mainly because the BIC in combination with
polynomial density can (a) handle small sample sizes, and (b) not be forced to determine
the appropriate number of components for these samples. This shows that the learner
generalises well even with small sample sizes thereby avoiding overfitting.

Q2: Which trends in parameter learning can be observed for ...
Q2.1: ... the order?

The order of the polynomials in the learned models stayed relatively low in a range
from 2 to 5. In fact, only three attributes over all UCI datasets learned an order that was
higher than 5 but never higher than 7 (see Table 1). The few outliers occurred when an
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attribute contained a high number of missing values. Naturally, low order polynomials
are computationally simpler to integrate during inference.

Q2.2: ... the number of intervals?

The appropriate number of intervals to approximate a PDF increases with its non-
uniformity, the unimodal Gaussian only needed 3 pieces, whereas the 5 Gaussian Mix-
ture needed 6 or more (depending on the sample size). Furthermore, to achieve a close
approximation, the cutpoints have to span the entire range of attribute values which is
why our algorithm often preferred equal frequency over equal width partitions.

We also observed that the BIC is sensitive to the number of attribute instances. For
under 100 data points, the smallest partition and order was often chosen (cf. Table 1).
This observation helps to explain the behaviour when missing values are observed. If a
dataset contained missing values, we filtered them out in a preprocessing step leading
to less samples for the attribute so as to not skew the learner. However, our observations
indicate that even though more values achieve a higher score, the smaller representation
is still able to generalise well.

4.3 Rule Learning

Here, we report on how the invented predicates integrated with the discrete rule learners.

grade_high(A,B) :- sat_low(A,B), \+diff hard(B), \+iq-1(A,X).
grade_high(A,B) :- takes(A,B), \+diff hard(B).
grade_high(A,B) :- nrhours_4(B,Y), iq-1(A,X).
grade_high(A,B) :- nrhours_4(B,Y), course(B).

grade_ high(A,B) :- sat_low(A,B)

0.056367 -0.001598*% X + 1.25739%e-05 * X " 2 ::

iq-1(A,X):-iq(A,X) ,between(52.6,103.4,X)
Table 3: Example rules learned by ProbFOIL+ (above horizontal line) and SLIPCOVER (below
line) for the target grade_high(A,B). Below these a sample predicate is shown, the polynomial
is given as a weight before the rule head iq-1(A,X) and the body of the rule determines the
interval start and end points where the polynomial density holds.

Q3: How do the invented predicates interact with the rule learners? The idea
behind these invented predicates is to capture continuous data in terms of PP density
approximations, which are ultimately adapted to the input format of the rule learners.
Table 3 shows an example. The invented predicates are distinguished by the underscores
followed by numbers. In the case of the iq predicate, higher number indicate higher
values. The grade of a course being influenced by a student’s intelligence is clearly
intuitive: a student either gets a high grade if their intelligence is not low (rule 1) or if
they have low intelligence and put in a lot of hours of study (rule 3), and so, the rules
provide a logical way to make sense of dependencies between subspaces in a mixed
discrete-continuous settings. We further see in Table 4 that the rule accuracy is not
affected over larger domains, which is clearly desirable.

Q4: How do the rule learners compare? As can be seen in Table 4, our setting
is not necessarily indicative of any general trend for the two rule learners, but we did
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grade L AUCPR AUCROC ThPr
high S 0.249906564 0.750555262 8 1.375
P 0.381490547 0.935926625 2 2.5
mid S 0.404951538 0.9402451557 1
P 0.3914379 0.9368269112 2
low S 0.152929751 0.813107006 10 1.4
P 0.166327753 0.654570657 1 3
Table 4: Statistics for the predicates grade_high, grademid, grade_low for the two rule
learners (L): SLIPCOVER (S) and ProbFOIL+ (P). Comparisons are drawn in terms of area
under the precision/recall curve (AUCPR), area under the ROC curve (AUCROC), the number of
rules in a theory (Th) and the average number of literals per rule for a theory (Pr).

see, for example, that SLIPCOVER rules are shorter than ones learned via ProbFOIL+,
on average. In terms of standard measures, we found both to be sufficient for inducing
reasonable programs.

QS: How efficient is the query engine? In order to test the efficiency of our in-

P t=5 =10 t=20 t=50 t=100

2 0.9514 1.0506 1.2817 2.1540 4.0185

5 1.2804 1.4325 1.6293 2.5331 4.3767

10 1.4885 1.5773 1.8441 2.7239 4.6914

15 1.8313 1.9621 2.2031 3.1954 5.1372
Table 5: Query execution time in seconds. P denotes the number of pieces of the underlying
attributes, and t the amount of terms in the query.

ference engine over large programs, we generated 100 random continuous features and
tested the query computation time. We fixed the number of bins to 2, 5, 10 and 15 in
order to study the computation time. The query length, e.g. the number of terms in the
query was set to 5, 10, 20, 50 and 100. The results are shown in Table 5. As can be seen,
the system scales linearly with increasing sizes, which is desirable.

5 Related Work

Inference and learning in probabilistic systems are the most fundamental problems in
uncertainty reasoning within Al, to which our work here contributes. There is an impor-
tant distinction to be made between graphical models (including relational counterparts
such as Markov logic networks [42]) and the inductive logic programming machinery
that we use here, the latter based on logical deduction and proof theory. A comprehen-
sive discussion on the semantic subtleties would be out of scope, and orthogonal to the
main thrust of the paper. We refer interested readers to the lineage discussion in [13,
39], and the possible worlds perspective in [43]. Indeed, our fundamental contributions
include the dynamic interval and the polynomial density construction, all of which can
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perhaps be easily applied to other formalisms. (Naturally, the choice of the underlying
induction paradigm may affect the nature and interpretability of the rules learned.)

From an inference viewpoint, much of the literature is focused on discrete random
variables for which approaches such as model counting and bucket elimination have
strong runtime bounds [9, 37]. In contrast, WMI serves as a computational abstraction
for exact and approximate inference in hybrid domains [6, 5] based on piecewise poly-
nomial approximations. It is thus different in spirit to variational methods and analytic
closed-form solutions for parametric families. We refer the reader to [6] for discussions.

On the learning front, several feature and structure induction techniques have been
proposed primarily for discrete data (or discretised models of continuous data). Indeed,
learning relational features from data is very popular in NLP and related areas [40, 44].
Rule learning has been studied in many forms, e.g., [17,26].

We leverage ProbFOIL+ and SLIPCOVER in this paper. ProbFOIL+ is based on
the mFOIL rule learner [17]. Later work, such as nFOIL [26] integrates FOIL with
Bayesian learning, and kFOIL [27] admits the specification of kernel methods with
FOIL. Early versions of Markov logic network structure learning algorithms, for ex-
ample, combined ideas from ILP and stochastic greedy search from classical graphi-
cal modelling communities [24]. Approaches such as [36, 2] have further applied rule
learning to complex applications such as automated planning and affordances. SLIP-
COVER, on the other hand, is based on SLIPCASE [7]. In general, the structure is
learned through an iterative search through the clause space.

Treating continuous and hybrid data in such contexts, however, is rare. Existing
inference schemes for hybrid data are either approximate, e.g., [33, 1], or make restric-
tive assumptions about the distribution family (e.g., Gaussian potentials [28]). Structure
learning schemes, consequently, inherit these limitations, e.g., [35,41] where they learn
rules by assuming Gaussian base atoms.

6 Conclusions

To the best of our knowledge, this is the first attempt to articulate a learning regime
for inducing PLPs from continuous data. It contributes an algorithmic framework that
learns piecewise polynomial representations which are then integrated with rule learn-
ing to obtain probabilistic logic programs, along with effective symbolic inference. In
our view, this work takes a major step towards the difficult challenge of inducing rep-
resentations from data, especially continuous and mixed discrete-continuous data. In
the long term, we hope the declarative/interpretability aspect of our proposal will prove
useful when reasoning and learning over uncertain hybrid data.
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