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Abstract
Among the many approaches for reasoning about degrees
of belief in the presence of noisy sensing and acting,
the logical account proposed by Bacchus, Halpern, and
Levesque is perhaps the most expressive. While their for-
malism is quite general, it is restricted to fluents whose
values are drawn from discrete countable domains, as op-
posed to the continuous domains seen in many robotic
applications. In this paper, we show how this limitation
in their approach can be lifted. By dealing seamlessly
with both discrete distributions and continuous densities
within a rich theory of action, we provide a very general
logical specification of how belief should change after
acting and sensing in complex noisy domains.

1 Introduction
For many AI applications, and robotics in particular, it is not
enough to deal with incomplete knowledge, where some for-
mula φ might be unknown. One must also know which of
φ or ¬φ is the more likely, and by how much. Perhaps the
most general formalism for dealing with degrees of belief in
formulas, and in particular, with how degrees of belief should
evolve in the presence of noisy sensing and acting is the ac-
count proposed by Bacchus, Halpern, and Levesque [1999],
henceforth BHL. Among its many properties, the BHL model
shows precisely how beliefs can be made less certain by act-
ing with noisy effectors, but made more certain by sensing
(even when the sensors themselves are noisy).

The main advantage of a logical account like BHL is that
it allows a specification of belief that can be partial or incom-
plete, in keeping with whatever information is available about
the application domain. It does not require specifying a prior
distribution over some random variables from which posterior
distributions are then calculated, as in Kalman filters, for ex-
ample [Dean and Wellman, 1991]. Nor does it require speci-
fying the conditional independences among random variables
and how these dependencies change as the result of actions,
as in the temporal extensions to Bayesian networks [Pearl,
1988]. In the BHL model, some logical constraints are im-
posed on the initial state of belief. These constraints may
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be compatible with one or very many initial distributions and
sets of independence assumptions. All the properties of belief
will then follow at a corresponding level of specificity.

Subjective uncertainty is captured in the BHL account us-
ing a possible-world model of belief [Kripke, 1963; Hintikka,
1962; Fagin et al., 1995]. In classical possible-world se-
mantics, a formula φ is believed to be true when φ comes
out true in all possible worlds that are deemed accessible.
In BHL, the degree of belief in φ is defined as a normal-
ized sum over the possible worlds where φ is true of some
nonnegative weights associated with those worlds. (Inac-
cessible worlds are assigned a weight of zero.) To reason
about belief change, the BHL model is then embedded in
a rich theory of action and sensing provided by the situ-
ation calculus [McCarthy and Hayes, 1969; Reiter, 2001;
Scherl and Levesque, 2003]. The BHL account provides ax-
ioms in the situation calculus regarding how the weight as-
sociated with a possible world changes as the result of act-
ing and sensing. The properties of belief and belief change
then emerge as a direct logical consequence of the initial con-
straints and these changes in weights.
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Figure 1: Robot operating in a 2-dimensional world.

To see a very simple example, imagine a robot located at
some position on a two-dimensional grid, to the right of a
wall parallel to the Y-axis as in Figure 1. Let h be the flu-
ent representing the robot’s horizontal distance to the wall.
The fluent h would have different values in different possible
worlds. In a BHL specification, each of these worlds might
be given an initial weight. For example, a uniform distribu-
tion might give an equal weight of .1 to ten possible worlds
where h ∈ {2, 3, . . . , 11}. The degree of belief in a formula
like (h < 9) is then defined as a sum of the weights, and
would lead here to a value of .7. The theory of action would
then specify how these weights change as the result of acting
(such as moving away or towards the wall) and sensing (such
as obtaining a reading from a sonar aimed at the wall).



While this model of belief is widely applicable, it does
have one serious drawback: it is ultimately based on the ad-
dition of weights and is therefore restricted to fluents having
discrete countable values. This is in contrast to many robotic
applications [Thrun et al., 2005], where event and observation
variables are characterized by well-known continuous distri-
butions. There is no way to say in BHL that the initial value of
h is any real number drawn from a uniform distribution on the
interval [2, 12]. One would again expect the belief in (h < 9)
to be .7, but instead of being the result of summing weights, it
must now be the result of integrating densities over a suitable
space of values, something quite beyond the BHL approach.

The goal of this paper is to show how with minimal ad-
ditional assumptions this serious limitation of BHL can be
lifted. We present a formal specification of the degrees of
belief in formulas with real-valued fluents (and other fluents
too), and how belief changes as the result of acting and sens-
ing. Our account will retain the advantages of BHL but work
seamlessly with discrete probability distributions, probability
densities, and perhaps most significantly, with difficult com-
binations of the two. (See Theorem 4 item 4 below.)

The rest of the paper is organized as follows. We review the
formal preliminaries, and the BHL model in particular. We
then show how the definition of belief in BHL can be refor-
mulated as a different summation, which then provides suffi-
cient foundation for our extension to continuous domains. In
the final sections, we discuss related and future work.

2 Preliminaries
The language L of the situation calculus [McCarthy and
Hayes, 1969] is a many-sorted dialect of predicate calculus,
with sorts for actions, situations and objects (for everything
else, and includes the set of reals R as a subsort). A situa-
tion represents a world history as a sequence of actions. A set
of initial situations correspond to the ways the world might
be initially. Successor situations are the result of doing ac-
tions, where the term do(a, s) denotes the unique situation
obtained on doing a in s. The term do(α, s), where α is the se-
quence [a1, . . . , an] abbreviates do(an, do(. . . , do(a1, s) . . . )).
Initial situations are defined as those without a predecessor:

Init(s) � ¬∃a, s′. s = do(a, s′).

We let the constant S0 denote the actual initial situation, and
here, we use the variable ι to range over initial situations only.

The picture that emerges from the above is a set of trees,
each rooted at an initial situation and whose edges are actions.
In general, we want the values of predicate and functions to
vary from situation to situation. For this purpose, L includes
fluents whose last argument is always a situation. Here we as-
sume without loss of generality that all fluents are functional.

Basic action theory
Following [Reiter, 2001], we model dynamic domains in L
by means of a basic action theoryD, which consists of 1

1. axiomsD0 that describe what is true in the initial states,
including S0;

1As usual, free variables in any of these axioms should be under-
stood as universally quantified from the outside.

2. precondition and successor state axioms that describe
the conditions under which actions are executable and
the changes to fluents on executing actions respectively;

3. domain-independent foundational axioms, the details of
which need not concern us here. See [Reiter, 2001].

We obtain many advantages by axiomatizing this way, includ-
ing a simple solution to the frame problem [Reiter, 2001].

An agent reasons about actions by means of the entailments
ofD, for which standard Tarskian models suffice. We assume
henceforth that models also assign the usual interpretations to
=, <, >, 0, 1,+,×, /,−, e, π and xy (exponentials).2

Likelihood and degree of belief
The BHL model of belief builds on a treatment of knowledge
by Scherl and Levesque [2003]. Here we present a simpler
variant based on just two distinguished binary fluents l and p.

The term l(a, s) is intended to denote the likelihood of ac-
tion a in situation s. For example, suppose sonar(z) is the
action of reading the value z from a sensor that measures the
distance to the wall, h.3 We might assume that this action is
characterized by a truncated Gaussian error model:4

l(sonar(z), s) = u ≡
(z ≥ 0 ∧ u = N(z − h(s); 0, 4)) ∨ (z < 0 ∧ u = 0) (B1)

which stipulates that the difference between a nonnegative
reading of z and the true value h is normally distributed with
a variance of 4 and mean of 0. (A mean of 0 indicates that
there is no systematic bias in the reading.) In general, the ac-
tion theoryD is assumed to contain for each action type A an
additional action likelihood axiom of the form

4. l(A(~x), s) = u ≡ φA(~x, u, s),
where φA is a formula that characterizes the conditions under
which action A(~x) has likelihood u in s. (Actions that have no
sensing aspect should be given a likelihood of 1.)

Next, the p fluent determines a probability distribution on
situations. The term p(s′, s) denotes the relative weight ac-
corded to situation s′ when the agent happens to be in situa-
tion s. The properties of p in initial states, which vary from
domain to domain, are specified by axioms as part ofD0. The
following nonnegative constraint must be included:

∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)) (1)
Note that this is a stipulation about initial states ι only. But
BHL provide a successor state axiom for p, and show that
with an appropriate action likelihood axiom, the nonnegative
constraint then continues to hold everywhere:

p(s′, do(a, s)) = u ≡
∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′)∧

u = p(s′′, s) × l(a, s′′)]
∨ ¬∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′) ∧ u = 0]

(2)

2Alternatively, one could specify axioms for characterizing the
field of real numbers inD. Whether or not reals with exponentiation
is first-order axiomatizable remains a major open question.

3Naturally, we assume that the value z being read is not under the
agent’s control. See BHL for a precise rendering of this nondeter-
minism in terms of GOLOG operators [Reiter, 2001].

4Note thatN is a continuous distribution involving π, e, exponen-
tiation, and so on. Therefore, BHL always consider discrete proba-
bility distributions that approximate the continuous ones.



That is, the weight of situations s′ relative to do(a, s) is the
weight of their predecessors s′′ times the likelihood of a con-
tingent on the successful execution of a at s′′. One conse-
quence of (1) and (2) is that (p(s′, s) > 0) will be true only
when s′ and s share the same history of actions.

With these two fluents elaborated, the degree of belief can
be defined as the total weight of all accessible situations. Let
φ be a formula with a single free variable of sort situation.5
Then the degree of belief in φ in situation s is defined as an
abbreviation by

Bel(φ, s) �
1
γ

∑
{s′:φ[s′]}

p(s′, s), (3)

where γ, the normalization factor, is understood throughout
as the same expression as the numerator but with φ replaced
by true. Here, for instance, γ is

∑
s′ p(s′, s). Note that we do

not have to insist that s′ and s share histories since p(s′, s) will
be 0 otherwise. The BHL paper shows how these summations
can be expressed using second-order quantification.

This Bel is well defined only when the sum over all those
situations s′ such that φ[s′] holds is finite. This precludes
continuous probability distributions, and for that matter, any
domain that suggests an infinite set of situations agreeing on
a formula. We now proceed to remove these restrictions.

3 Degree of Belief Reformulated
Prior to treating continuous fluents, our first objective is to
reformulate (3), so that instead of summing over situations,
we sum over fluent values. The next section then shows how
this scheme generalizes from summation to integration.

First, some notation. We will use two forms of conditional
terms as convenient abbreviations in logical formulas. The
first is the usual “case” notation with curly braces:

z =

{
t1 if ψ
t2 otherwise

� (ψ ⊃ z = t1) ∧ (¬ψ ⊃ z = t2)

The second involves a quantifier and a default value of 0, like
in formula (2). If z is a variable, ψ is a formula and t is a term,
we use 〈z.ψ→ t〉 as a logical term characterized as follows:

〈z.ψ→ t〉 = u �
[(∃zψ) ⊃ ∀z(ψ ⊃ u = t)] ∧ [(¬∃zψ) ⊃ u = 0)].

The notation says that when ∃zψ is true, the value of the term
is t; otherwise, the value is 0. When t uses z (the usual case),
this will be most useful if there is a unique z that satisfies ψ.

Returning to the task at hand, suppose that there are n flu-
ents f1, f2, . . . , fn in L which take no arguments other than
the situation argument,6 and that they take their values from
some finite sets. We can rephrase (3) as follows:

Bel(φ, s) �
1
γ

∑
~x

∑
s′

{
p(s′, s) if

∧
fi(s′) = xi ∧ φ[s′]

0 otherwise

5The φ is usually written either with the situation variable sup-
pressed or with a distinguished variable now. Either way, φ[t] is used
to denote the formula with that variable replaced by t.

6We will return to this assumption in the penultimate section.

In English: for each possible value of the fluents, sum over all
possible situations and for each one, if the fluents have those
values and φ holds, then use the p value, and 0 otherwise.

To arrive at a definition that eschews the summing of sit-
uations, we start with the case of initial situations. Let us
recall the formalization of the situation calculus presented in
[Levesque et al., 1998] for multiple initial situations, which
includes an axiom saying there is precisely one initial situa-
tion for any possible values of the fluents. For us, this is:

[∀~x∃ι
∧

fi(ι) = xi] ∧ [∀ι, ι′.
∧

fi(ι) = fi(ι′) ⊃ ι = ι′] (∗)

Under the assumption (∗), we can rewrite (3) for s = S0 as

Bel(φ, S0) �
1
γ

∑
~x

〈ι.
∧

fi(ι) = xi ∧ φ[ι]→ p(ι, S0)〉 (4)

In fact, the two abbreviations turn out to be equivalent:

Theorem 1: Let D be any basic action theory, φ any L-
formula, and suppose (∗) holds. Then the abbreviations for
Bel(φ, S0) in (3) and (4) compute the same real number.

This shows that for S0, summing over possible worlds can be
replaced by summing over fluent values.

But something like (4) will not fly with non-initial situa-
tions. For those situations, the assumption that no two agree
on all fluent values is untenable. To see why, imagine an ac-
tion left(z) that moves the robot z units to the left (towards the
wall) but that the motion stops if the robot hits the wall:

h(do(a, s)) = u ≡
¬∃z(a = left(z)) ∧ u = h(s) ∨
∃z(a = left(z) ∧ u = max(0, h(s) − z)).

(B2)

In this case, if we have two initial situations that are identi-
cal except that h = 3 in one and h = 4 in the other, then the
two distinct successor situations that result from doing left(4)
would agree on all fluents (since both would have h = 0).

Ergo, we cannot sum over fluent values for non-initial sit-
uations unless we are prepared to count some fluent values
more than once. However, what Reiter’s solution to the frame
problem gives us is a way of computing what holds in non-
initial situations in terms of what holds in initial ones, which
can be used for computing belief at arbitrary successors of S0:

Bel(φ, do(α, S0)) �
1
γ

∑
~x

〈ι.
∧

fi(ι) = xi ∧ φ[do(α, ι)] →
p(do(α, ι), do(α, S0)) 〉

(5)

To say more about how (and why) this definition works, we
first note that by (1) and (2), p will be 0 unless its two argu-
ments share the same history. So the s′ argument of p in (3) is
written as do(α, ι) in (5). By ranging over all fluent values, we
range over all initial ι as before (without ever having to deal
with fluent values in non-initial situations). Of course, we
test that the φ holds and use the p weight in the appropriate
non-initial situation. This gives us the following:

Theorem 2: Let D be any basic action theory with (∗) ini-
tially, φ anyL-formula, and α any sequence of ground actions
terms. Then the abbreviations for Bel(φ, do(α, S0)) in (3) and
(5) compute the same real number.



Thus, by incorporating a simple constraint on initial situa-
tions, we now have a notion of belief that does not require
summing over situations. Our reformulation only applies
when we are given an explicit sequence α of actions (includ-
ing the sensing ones), but this is just what we would expect
to be given for the projection problem [Reiter, 2001]. In fact,
we can use regression on the φ and the p to reduce the belief
formula (5) to a formula involving initial situations only.

4 From Weights to Densities
The uncountable nature of continuous domains precludes
summing over possible situations. In this section, we present
a new formalization of belief in terms of integrating over flu-
ent values, and relating that to the space of situations based
on the development in the preceding section.

Allowing real-valued fluents implies that there will be un-
countably many initial situations. Imagine, for example, that
h can now be any nonnegative real number. Then for any non-
negative real x there will be an initial situation where (h = x)
is true. Suppose further thatD0 includes:

p(ι, S0) =

{
.1 if 2 ≤ h(ι) ≤ 12
0 otherwise

which says that the true value of h initially is drawn from a
uniform distribution on [2,12]. Then there are uncountably
many situations where p is non-zero initially. So the p fluent
now needs to be understood as a density, not as a weight. In
particular, for any x, we would expect the initial degree of
belief in the formula (h = x) to be 0, but in (h ≤ 12) to be 1.

But there is more to the story. Interesting subtleties arise
with p in non-initial situations. For example, if the robot were
to do left(4), there would be an uncountable number of situa-
tions agreeing on h = 0 (namely, those where 2 ≤ h ≤ 4 was
true initially). In a sense, the point h = 0 now has weight (the
degree of belief in h = 0 should be .2), while the other points
h ∈ (0, 8] retain their densities. In effect, we have moved from
a density to a mixed distribution on h.

One of the advantages of our BHL style approach is that we
will not need to specify how to handle changing densities and
distributions like this. These will emerge as side-effects. Our
proposal for generalizing BHL to the continuous case keeps
its simplicity, and consists of:

• a standard situation calculus basic action theory, includ-
ing (∗) to accommodate multiple initial situations;

• action likelihood axioms for the distinguished fluent l,
such as the one provided for sonar earlier;

• the initial constraint (1) and the successor state axiom (2)
for the distinguished fluent p. Note that we now interpret
p(s′, s) as the density of s′ when the agent is in s.

Now partition the fluents in L into two groups, those whose
domain is countable, f1, . . . , fn, and those whose domain is
R, g1, . . . , gm. Let us first define the belief density of φ as:

Density(~x, ~y, φ, do(α, S0)) �
〈 ι.

∧
gi(ι) = xi ∧

∧
fj(ι) = yj ∧ φ[do(α, ι)]
→ p(do(α, ι), do(α, S0)) 〉

Then the degree of belief in φ is simply an abbreviation for:

Bel(φ, s) �
1
γ

∫
~x

∑
~y
Density(~x, ~y, φ, s) (6)

That is, the belief in φ is obtained by ranging over all possi-
ble fluent values, and integrating and summing the densities
of situations where φ holds. As before, by insisting on an
explicit world history, the ι need only range over initial situ-
ations, giving us the exact correspondence with fluent values.
The normalization factor γ is the numerator but with φ re-
placed by true. Integration and infinite sums can be expressed
using second-order quantification; see the appendix.

This completes our new definition of belief. We will show
that it does the appropriate thing using an example in the next
section and its connection to Bayesian conditioning below.

First note, however, that definition (6) will not result in a
numeric value when γ is undefined or when γ = 0, and nor
should it. For example, imagine aD0 with the following:

p(ι, S0) =

{
b if g(ι) is rational
0 otherwise

This defines a set whose indicator function is not (Riemann)
integrable7 and no amount of normalization will fix this. Sim-
ilarly, we get that γ = 0 after an action whose likelihood is 0,
for example, after sonar(−3), assumingD contains (B1).

There are, however, legitimate cases of belief that defini-
tion (6) does not yet handle. There are two limitations:8

Limitation 1: only continuous sensors. We have lifted BHL’s
successor state axiom for p without any alterations, multiply-
ing p(s′, s) by l(a, s′) to obtain p(do(a, s′), do(a, s)). Since p
is a density, l must be one as well. This means that we can-
not yet handle a discrete sensor that has a finite number of
possible readings whose weights sum to 1. (More precisely,
the likelihood function cannot give a non-zero result only to
a finite number of values.) So although we do not have to
approximate Gaussian error models (or any other continuous
models) for our sensors as would BHL, a different weight-
based notion of likelihood is needed for discrete sensors.
Limitation 2: only deterministic actions. When we perform
actions that simply change the world, such as left, we assume
that the probability density is completely transferred from the
start to the final situation, which is a form of imaging [Lewis,
1976]. The likelihood density of these actions is uniformly
1. So noisy actions, which can result in different outcomes
with different likelihoods, are not yet handled. Belief would
require further summing/integrating over all these outcomes.

Belief change and Bayesian conditioning
A standard model for belief change wrt noisy sensing is
Bayesian conditioning [Pearl, 1988], which rests on two sig-
nificant assumptions. First, sensors do not physically change

7In the calculus community, the concept of a gauge integral has
been studied [Swartz, 2001], which is a generalization of the Rie-
mann integral, and allows for the integration of indicator functions
such as the one above. We have chosen to remain within the frame-
work of classical integration, but other accounts may be useful.

8We do have proposals for handling both of these limitations.
The details are left for a longer version of the paper.



the world, and second, conditioning on a random variable g is
the same as conditioning on the event of observing g. When a
similar set of assumptions are imposed as axioms in an action
theoryD, we obtain an identical sensor fusion model.

Begin by stipulating that actions are either physical or of
the sensing type [Scherl and Levesque, 2003]. Now, if obs(z)
senses the true value of fluent g, then assume the sensor error
model to be:

l(obs(z), s) = u ≡ u = Err(z, g(s))
where Err(u1, u2) is some expression with only two free vari-
ables, both numeric. This captures the idea that the error
model of a sensor measuring g depends only on the true value
of g, and is independent of other factors.9 Then
Theorem 3: SupposeD is as above, φ is anyL-formula men-
tioning only g and u is a variable from {x1, . . . , xm, y1, . . . , yn}:
D |= Bel(φ, do(obs(z), S0)) =∫

~x

∑
~y Density(~x, ~y, φ ∧ g = u, S0) × Err(z, u)∫

~x

∑
~y Density(~x, ~y, g = u, S0) × Err(z, u)

That is, the posterior belief in φ is obtained from the prior
density and the error likelihoods for all points where φ holds
given that z is observed, normalized over all points.10 The
usual case for φ are formulas such as b ≤ g ≤ c, which is esti-
mated from the prior and error likelihoods for all points in the
range [b, c]. More generally however, and unlike many prob-
abilistic formalisms, we are able to reason about any logical
property φ of the random variable g being measured.

5 Example
To reason about the beliefs of our robot, let us build a simple
basic action theory D. Suppose the robot’s vertical position
is given by a fluent v. Now imagine a p as follows:

p(ι, S0) =

{
.1 × N(v(ι); 0, 16) if 2 ≤ h(ι) ≤ 12
0 otherwise

(B3)

This says that the value of v is normally distributed about the
horizontal axis with variance 16, and independently, that the
value of h is uniformly distributed between 2 and 12.11

We specified the way h changes in (B2). Imagine also:
v(do(a, s)) = u ≡

¬∃z(a = up(z)) ∧ u = v(s) ∨
∃z(a = up(z) ∧ u = v(s) + z).

(B4)

This says that performing up(z) increments the current value
of v by z, but nothing else affects it. Finally, suppose the sonar
from (B1) is the only sensor at the robot’s disposal.12 Then:

9This is not required in general. We might imagine, for example,
that the sonar’s accuracy depends on the room temperature, and such
accounts are expressible in our formalism.

10As mentioned earlier, if the normalizing factor γ = 0, which
corresponds to the case of conditioning on an event that has a 0 prob-
ability, Bayes rule is not defined, and neither is the expression here.

11Initial beliefs can also be specified forD0 using Bel directly. We
remark that a simple distribution is chosen for illustrative purposes.
In general, the p specification does not require the variables to be
independent, nor does it have to mention all variables.

12For a more elaborate example involving multiple competing
sensors, see [Belle and Levesque, 2013].
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Figure 2: Belief density change for h at S0 (in blue), after sensing
5 (in green), and after sensing 5 twice (in red).

Theorem 4: Let D contain the union of (1), (2), (∗) and
(B1)−(B4). Then the following are logical entailments ofD:

1. Bel([h = 3 ∨ h = 4 ∨ h = 7], S0) = 0.
Although we are integrating a density function q(x1, x2)
over all real values, q(x1, x2) = 0 unless x1 ∈ {3, 4, 7}.

2. Bel(h ≤ 9, S0) = .7.
Here we are integrating a function that is 0 except when
2 ≤ x1 ≤ 9. So this is ∫R ∫

9
2 .1×N(x2; 0, 16) dx1 dx2 = .7.

3. Bel(h > 7v, S0) ≈ .6.
Beliefs about any mathematical expression involving the
random variables, even when that does not correspond to
well known density functions, are entailed.

4. Bel(h = 0, do(left(4), S0)) = .2.
Here a continuous distribution evolves into a mixed one.
By (B2), h=0 holds after the action iff h≤4 held before.
So this results in ∫R ∫

4
2 .1 × N(x2; 0, 16) dx1 dx2 = .2.

5. Bel(h ≤ 3, do(left(4), S0)) = .5.
Bel’s definition is amenable to a set of h values, where
one value has a weight of .2, and all the other real values
have a uniformly distributed density of .1.

6. Bel([∃a, s. now=do(a, s)∧h(s)>1], do(left(4), S0)) = 1.
It is possible to refer to earlier or later situations using
now as the current situation. This says that after moving,
there is full belief that (h > 1) held before the action.

7. Bel(h = 4, do([left(4), left(−4)], S0)) = .2
Bel(h = 4, do([left(−4), left(4)], S0)) = 0.
The point h = 4 has 0 weight initially (like in item 1).
Moving leftwards first means many points “collapse”,
and so this point (now having h value 0) gets .2 weight
which is retained on moving away. But not vice versa.

8. Bel(−1 ≤ v ≤ 1, do(left(4), S0)) =

Bel(−1 ≤ v ≤ 1, S0) = ∫
1
−1N(x2; 0, 16)dx2.

Owing to the solution to the frame problem, belief in v is
unaffected by a lateral motion. For v ∈ [−1, 1], it is the
area between [−1, 1] bounded by the specified Gaussian.

9. Bel(−1≤v≤7, do(up(2.5), S0)) = Bel(−3.5≤v≤4.5, S0).
After the action up(2.5), the Gaussian for v’s value has
its mean “shifted” by 2.5 because the density associated
with v = x2 initially is now associated with v = x2 + 2.5.

10. Bel(h ≤ 9, do(sonar(5), S0)) ≈ .97.
Bel(h ≤ 9, do([sonar(5), sonar(5)], S0) ≈ .99.



Compared to item 2, belief in h ≤ 9 is sharpened by ob-
taining a reading of 5 on the sonar, and sharpened to al-
most certainty on a second reading of 5. This is because
the p function, according to (2), incorporates the likeli-
hood of each sonar(5) action. Starting with the density
function in item 2, each sensor reading multiplies the ex-
pression to be integrated by N(5 − x1; 0, 4), as given by
(B1). These changing densities are shown in Figure 2.

6 Related Work and Discussions

Belief update via sensor information has been a fundamental
concern of autonomous agent formalisms. On the one hand,
we have probabilistic formalisms such as Bayesian networks
[Pearl, 1988; Lerner et al., 2002], and Kalman and particle
filters [Dean and Wellman, 1991; Fox et al., 2003]. These
have difficulties handling strict uncertainty. Moreover, since
rich models of actions are rarely incorporated, shifting con-
ditional dependencies and distributions are hard to address in
a general way. While there are graphical formalisms with an
account of actions, such as [Darwiche and Goldszmidt, 1994;
Hajishirzi and Amir, 2010], they too have difficulties handling
strict uncertainty and quantification. To the best of our knowl-
edge, no existing probabilistic formalism handles changes in
state variables like those considered here.

Logical formalisms, on the other hand, such as [Fagin
and Halpern, 1994; Bacchus, 1990], provide means to spec-
ify properties about the domain together with probabilities
about propositions. Related to these are relational proba-
bilistic models [Ng and Subrahmanian, 1992; Milch et al.,
2005] and Markov logics [Richardson and Domingos, 2006;
Domingos et al., 2006; Tran and Davis, 2008; Choi et al.,
2010]. Here too explicit actions are seldom addressed.

Action logics share the motivation of the work here. Re-
cent proposals, for example [Van Benthem et al., 2009],
treat sensor fusion. However, these and related frameworks
[Halpern and Tuttle, 1993; Kushmerick et al., 1995] are
propositional. Proposals based on the situation and fluent
calculi are first-order [Bacchus et al., 1999; Poole, 1998;
Boutilier et al., 2000; Mateus et al., 2001; Shapiro, 2005;
Gabaldon and Lakemeyer, 2007; Fritz and McIlraith, 2009;
Belle and Lakemeyer, 2011; Thielscher, 2001], but none of
them deal with continuous sensor noise, and nor do the ex-
tensions for continuous processes [Herrmann and Thielscher,
1996]. We are also not aware of any logical approach for un-
certainty, dynamical or not, that deals with the integration of
continuous variables within the language.

Before wrapping up, let us remark that one of the strong
limitations of our work from the point of view of situation cal-
culus basic action theories is that our functional fluents take
no argument other than the situation term. While we do al-
low the values of the fluents to range over any set (including
the reals), fluents are also usually allowed to take arguments
from any set, including infinite ones. In probabilistic terms,
this would correspond to having a joint probability distribu-
tion over infinitely many, perhaps uncountably many, random
variables. We know of no existing work of this sort, and we
have as yet no good ideas about how to deal with it.

7 Conclusions
Robotic applications have to deal with numerous sources of
uncertainty, the main culprit being sensor noise. Probabilistic
error models have proven to be powerful in state estimation,
allowing the beliefs of a robot to be strengthened over time.
But to use these models, the modeler is left with the difficult
task of deciding how the domain is to be captured in terms
of random variables, and shifting conditional independences
and distributions. In the BHL model, one simply provides a
specification of some initial beliefs, characterizes the physical
laws of the domain, and suitable posterior beliefs are entailed.
The applicability of BHL to real-world robotics was limited,
however, by its inability to handle continuous distributions, a
limitation we lift in this paper. By recasting the assessment of
belief in terms of fluent values, we now seamlessly combine
the situation calculus with discrete probability distributions,
densities and combinations of the two. We demonstrated that
distributions evolve appropriately after actions, emerging as
a side-effect of the general specification. Nondeterminism in
acting and sensing is treated in a longer version of the paper.

Regarding future work, on the more computational side,
we have noted that the definition of belief seems amenable to
regression. (See [Belle and Levesque, 201x] for preliminary
results.) Assuming we are given priors and likelihoods drawn
from tractable continuous distributions [Box and Tiao, 1973],
one promising line of research would be to see if posteriors
can be calculated efficiently by regressing belief after action
to a formula concerning the initial state only.

Appendix: Integrals in Logic
Logical formulas can be used to characterize a variety of sorts of
integrals. Here we show the simplest possible case: the definite in-
tegral from −∞ to ∞ of a continuous real-valued function of one
variable. Other complications, including functions with multiple
variables, are treated in an extended version of the paper.

We begin by introducing a notation for limits to positive infinity.
For any logical term t and variable x, we let lim

x→∞
t stand for a term

characterized by the following:
lim
x→∞

t = z � ∀u(u > 0 ⊃ ∃m∀n(n > m ⊃
∣∣∣z − tx

n

∣∣∣ < u)).

The variables u, m, and n are understood to be chosen here not to
conflict with any of the variables in x, t, and z.

Next, for any variable x and terms a, b, and t, we introduce a term
INT[x, a, b, t] denoting the definite integral of t over x from a to b:

INT[x, a, b, t] � lim
n→∞

h ·
n∑

i=1

tx
(a+h·i)

where h stands for (b− a)/n. The variable n is chosen not to conflict
with any of the other variables. The summation term is a finite sum
(for each n) as defined in the BHL paper. Finally, we define the
definite integral of t over all real values of x by the following:∫

x
t � lim

u→∞
lim
v→∞

INT[x,−u, v, t].

The main result for this logical abbreviation is the following:
Theorem 5: Let g be a function symbol ofL standing for a function
from R to R, and let c be a constant symbol of L. Let M be any
logical interpretation of L such that the function gM is continuous
everywhere. Then we have the following:

If
∫ ∞

−∞

gM(x) . dx = cM then M |= (c =

∫
x
g(x)).
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