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Abstract

Location estimation is a fundamental sensing task in robotic
applications, where the world is uncertain, and sensors and
effectors are noisy. Most systems make various assumptions
about the dependencies between state variables, and espe-
cially about how these dependencies change as a result of ac-
tions. Building on a general framework by Bacchus, Halpern
and Levesque for reasoning about degrees of belief in the sit-
uation calculus, and a recent extension to it for continuous
domains, in this paper we illustrate location estimation in the
presence of a rich theory of actions using an example. We
also show that while actions might affect prior distributions
in nonstandard ways, suitable posterior beliefs are nonethe-
less entailed as a side-effect of the overall specification.

Introduction
Location estimation is a fundamental sensing task in robotic
applications (Thrun, Burgard, and Fox 2005), where the
world is uncertain, and sensors and effectors are noisy.
Agents operating under these conditions grapple with at
least two sorts of reasoning problems. First, because the
world is dynamic, actions perpetually change the properties
of the state. Second, because little in the world is definite,
the agent has to modify its beliefs based on the actions per-
formed and the results returned by its sensors.

To see a simple example, imagine a robot located in a 2-
dimensional grid, at a certain distance h to the right of a
wall, as in Figure 1. The robot might initially believe that
h is drawn from a uniform distribution on [2, 12]. Among
the robot’s many capabilities, we might imagine the ability
of moving left. A leftwards motion of 1 unit would shift the
uniform distribution on h to [1, 11], but a leftward motion
of 4 units would change the distribution more radically. The
point h=0 would now obtain a weight of .2, while h ∈ (0, 8]
would retain their densities. This mixed distribution would
then be preserved by a subsequent rightward motion. Like-
wise, we might imagine the robot to be equipped with two
onboard sensors: a sonar unit aimed at the wall estimating h,
and a GPS (global positioning system) device sensing both
h and the robot’s vertical position. Each of these might be
characterized by Gaussian error models, and the effect of a
reading from any sensor would revise the distribution on h
from uniform to an appropriate Gaussian. The robot is now
left with the difficult task of adjusting its beliefs as it moves

and obtains competing (perhaps conflicting) measurements
from individual sensors.
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Figure 1: Robot operating in a 2-dimensional world.

Probabilistic formalisms such as Kalman filtering (Dean
and Wellman 1991; Fox et al. 2003), and more generally,
Dynamic Bayesian Networks (Dean and Kanazawa 1989;
Pearl 1988), address sensor fusion. But while belief update
of known priors wrt Gaussian and other continuous error
models is treated appropriately, very little is said about how
actions might change values of certain state variables while
not affecting others. These formalisms also assume a full
specification of the dependencies between variables, making
it difficult to deal with other forms of incomplete knowledge,
and strict uncertainty in particular. Therefore occurrences
such as shifting densities (such as in the example above) and
shifting dependencies (assume lateral motion depends on the
ground’s slipperiness) are hard to address in a general way.

Perhaps the most general formalism for dealing with
probabilistic belief in formulas, and how that should evolve
in the presence of noisy acting and sensing, is a logical ac-
count by Bacchus, Halpern and Levesque (BHL) (1999). In
the BHL approach, besides quantifiers and other logical con-
nectives, one has the provision for specifying the degrees of
belief in formulas in the initial state. This specification may
be compatible with one or very many initial distributions and
sets of independence assumptions. All the properties of be-
lief will then follow at a corresponding level of specificity.

Subjective uncertainty is captured in the BHL scheme us-
ing a possible-world model of belief (Kripke 1963; Hintikka
1962; Fagin et al. 1995). Intuitively, the degree of belief in
φ is defined as a normalized sum over the possible worlds
where φ is true of some nonnegative weights associated with
those worlds. To reason about belief change, the BHL model
is then embedded in a rich theory of action and sensing pro-
vided by the situation calculus (McCarthy and Hayes 1969;
Reiter 2001; Scherl and Levesque 2003). The BHL account



provides axioms in the situation calculus regarding how the
weight associated with a possible world changes as the re-
sult of acting and sensing. The properties of belief and belief
change then emerge as a direct logical consequence of the
initial specifications and these changes in weights.

However, in contrast to the earlier mentioned Bayesian
formalisms, one of the limitations of the BHL approach is
that it is restricted to fluents whose values are drawn from
discrete countable domains. One could say, for example, that
h ∈ {2, 3, . . . , 11} is given an equal weight of .1, but stipu-
lating a continuous uniform distribution and Gaussian sen-
sor error models (and not discrete approximations thereof)
is quite beyond the BHL approach. In (Belle and Levesque
2013), we show how with minimal additional assumptions
this serious limitation of BHL can be lifted.

In this paper, we illustrate how the (generalized) BHL
scheme is utilized in location estimation using our exam-
ple consisting of a robot’s position in XY-plane, a sonar and
a GPS device. Our example supposes that the robot is ca-
pable of deterministic physical actions, while the sensors
are characterized by continuous error models. We stipulate
that the GPS device operates problematically when the robot
approaches the wall, perhaps due to signal obstructions, in
which case readings are subject to systematic bias. Thus, the
domain formalization illustrates belief change wrt shifting
densities as logical properties of actions, competing sensors,
and situation-specific bias, among others. Since no assump-
tions need to be made in general regarding the kind of distri-
butions that initial state variables are drawn from, nor about
dependencies between state variables, this work illustrates
how beliefs about the robot’s location would change after
acting and sensing in complex uncertain domains.

The paper is structured as follows. In the next section,
we briefly review formal preliminaries, such as the situation
calculus and the BHL scheme, as well as the essentials of
its generalization to continuous domains. We then model the
robot domain and illustrate properties about belief change.
In the final sections, we discuss related and future work.

Preliminaries
The language L of the situation calculus (McCarthy and
Hayes 1969) is a many-sorted dialect of predicate calcu-
lus, with sorts for actions, situations and objects (for ev-
erything else, and includes the set of reals R as a sub-
sort). A situation represents a world history as a sequence
of actions. A set of initial situations correspond to the ways
the world might be initially. Successor situations are the
result of doing actions, where the term do(a, s) denotes
the unique situation obtained on doing a in s. The term
do(α, s), where α is the sequence [a1, . . . , an] abbreviates
do(an, do(. . . , do(a1, s) . . . )). Initial situations are defined as
those without a predecessor:

Init(s) � ¬∃a, s′. s = do(a, s′).

We let the constant S0 denote the actual initial situation, and
we use the variable ι to range over initial situations only.

In general, the situations can be structured into a set of
trees, where the root of each tree is an initial situation and
the edges are actions. In dynamical domains, we want the

values of predicate and functions to vary from situation to
situation. For this purpose, L includes fluents whose last ar-
gument is always a situation. Here we assume without loss
of generality that all fluents are functional.

Basic action theory Following (Reiter 2001), we model
dynamic domains in L by means of a basic action theoryD,
which consists of 1

1. axioms D0 that describe what is true in the initial states,
including S0;

2. precondition axioms that describe the conditions under
which actions are executable;

3. successor state axioms that describe the changes to fluents
on executing actions;

4. domain-independent foundational axioms, the details of
which need not concern us here. See (Reiter 2001).

An agent reasons about actions by means of the entailments
of D, for which standard Tarskian models suffice. We as-
sume henceforth that models also assign the usual interpre-
tations to =, <, >, 0, 1,+,×, /,−, e, π and xy (exponentials).2

Likelihood and degree of belief The BHL model of be-
lief builds on a treatment of knowledge by Scherl and
Levesque (2003). Here we present a simpler variant based
on just two distinguished binary fluents l and p.

The term l(a, s) is intended to denote the likelihood of
action a in situation s. For example, suppose sonar(z) is the
action of reading the value z from a sensor that measures the
distance to the wall, h.3 We might assume that this action is
characterized by a Gaussian error model:4

l(sonar(z), s) = u ≡
(z ≥ 0 ∧ u = N(z − h(s); µ, σ2)) ∨ (z < 0 ∧ u = 0)

which stipulates that the difference between a nonnegative
reading of z and the true value h is normally distributed with
a variance of σ2 and mean of µ. In general, the action theory
D is assumed to contain for each action type A an additional
action likelihood axiom of the form

l(A(~x), s) = u ≡ φA(~x, u, s)

where φA is a formula that characterizes the conditions under
which action A(~x) has likelihood u in s. (Actions that have
no sensing aspect should be given a likelihood of 1.)

Next, the p fluent determines a probability distribution on
situations. The term p(s′, s) denotes the relative weight ac-
corded to situation s′ when the agent happens to be in situa-
tion s. The properties of p in initial states, which vary from

1As usual, free variables in any of these axioms should be un-
derstood as universally quantified from the outside.

2Alternatively, one could specify axioms for characterizing the
field of real numbers in D. Whether or not reals with exponentia-
tion is first-order axiomatizable remains a major open question.

3Naturally, we assume that the value z being read is not under
the agent’s control. See BHL for a precise rendering of this nonde-
terminism in terms of GOLOG operators (Reiter 2001).

4Note that N is a continuous distribution involving π, e, ex-
ponentiation, and so on. Therefore, BHL always consider discrete
probability distributions that approximate the continuous ones.



domain to domain, are specified by axioms as part of D0.
The following nonnegative constraint is also included inD0:

∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)) (P1)
While this is a stipulation about initial states ι only, BHL
provide a successor state axiom for p, and show that with an
appropriate action likelihood axiom, the nonnegative con-
straint then continues to hold everywhere:

p(s′, do(a, s)) = u ≡
∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′)∧

u = p(s′′, s) × l(a, s′′)]
∨ ¬∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′) ∧ u = 0]

(P2)

Now if φ is a formula with a single free variable of sort situ-
ation,5 then the degree of belief in φ is simply defined as the
following abbreviation:

Bel(φ, s) �
1
γ

∑
{s′:φ[s′]}

p(s′, s) (B)

where γ, the normalization factor, is understood throughout
as the same expression as the numerator but with φ replaced
by true. For example, here γ is

∑
s′ p(s′, s). We do not have

to insist that s′ and s share histories since p(s′, s) will be
0 otherwise. BHL show how summations can be expressed
using second-order logic, see the appendix. That is, neither
Bel’s definition nor summations are special axioms ofD, but
simply convenient abbreviations for logical terms. To sum-
marize, in the BHL scheme, an action theory consists of:

1. D0 as before, but now also including (P1);
2. precondition axioms as before;
3. successor state axioms as before, but now also including

one for p viz. (P2);
4. foundational domain-independent axioms as before; and
5. action likelihood axioms.

From sums to integrals While the definition of belief in
BHL has many desirable properties, it is defined in terms of
a summation over situations, and therefore precludes fluents
whose values range over the reals. The continuous analogue
of (B) then requires integrating over some suitable space of
values.

As it turns out, a suitable space can be found. First, some
notation. We use a form of conditional if-then-else expres-
sions, by taking some liberties with notation and the scope
of variables as follows. We write f = If ∃x. φ Then t1 Else t2
to mean the logical formula

f = u ≡ ∃x. [φ ∧ (u = t1)] ∨ [(u = t2) ∧ ¬∃x. φ]
Now, assume that there are n fluents f1, . . . , fn in L, and that
these take no arguments other than a situation.6 Next, sup-
pose that there is exactly one initial situation for any vector
of fluent values (Levesque, Pirri, and Reiter 1998):

[∀~x∃ι
∧

fi(ι) = xi] ∧ [∀ι, ι′.
∧

fi(ι) = fi(ι′) ⊃ ι = ι′] (∗)

5The φ is usually written either with the situation variable sup-
pressed or with a distinguished variable now. Either way, φ[t] is
used to denote the formula with that variable replaced by t.

6Basically, if we were to assume that the arguments of all flu-
ents, even k-ary ones, are taken from finite sets then this would
allow us to enumerate the n random variables of the domain (for

Under these assumptions, it can be shown that the summa-
tion over all situations in (B) can be recast as a summation
over all possible initial values x1, . . . , xn for the fluents:

Bel(φ, s) �
1
γ

∑
~x

P(~x, φ, s) (B′)

where P(~t, φ, s) is the (unnormalized) weight accorded to the
successor of an initial world where fi equals ti:

P(~t, φ, do(α, S0)) �
If ∃ι.

∧
fi(ι) = ti ∧ φ[do(α, ι)]

Then p(do(α, ι), do(α, S0))
Else 0

where α is an action sequence. In a nutshell, because every
situation has an initial situation as an ancestor, and because
there is a bijection between initial situations and possible
fluent values, it is sufficient to sum over fluent values to ob-
tain the belief even for non-initial situations. Note that un-
like (B), this one expects the final situation term do(α, S0)
mentioning what actions and observations took place to be
explicitly specified, but that is just what one expects when
the agent reasons about its belief after doing things, and for
the projection problem in particular (Reiter 2001).

The generalization to the continuous case then proceeds
as follows. First, we observe that some (though possibly not
all) fluents will be real-valued, and that p(s′, s) will now be
a measure of density not weight. Similarly, the P term above
now measures (unnormalized) density rather than weight.

Now suppose fluents are partitioned into two groups: the
first k take their values x1, . . . , xk from R, while the rest take
their values yk+1, . . . , yn from countable domains. Then the
degree of belief in φ is an abbreviation for:

Bel(φ, s) �
1
γ

∫
~x

∑
~y
P(~x · ~y, φ, s)

The belief in φ is obtained by ranging over all possible fluent
values, and integrating and summing the densities of situa-
tions where φ holds.7 In the appendix, we show how inte-
grals can be formulated using second-order quantification.
That is, as before, Bel, P, integrals and sums are simply con-
venient abbreviations, and do not involve special axioms in
D. More precisely, the continuous extension to BHL has the
same components from earlier, with a single revision:

1. D0 additionally includes (∗).
Note that likelihood axioms are specified as before, but we

will no longer have to approximate Gaussian error models
(or any other continuous models) as would BHL.

some large n). Note that, from the point of view of situation calcu-
lus basic action theories, fluents are typically allowed to take argu-
ments from any set, including infinite ones. In probabilistic terms,
this would this would correspond to having a joint probability dis-
tribution over infinitely many, perhaps uncountably many, random
variables. We know of no existing work of this sort, and we have
as yet no good ideas about how to deal with it.

7We are assuming here that the density function is (Riemann)
integrable. If it is not, belief is clearly not defined, nor should it
be. Similarly, if the normalization factor is 0, which corresponds to
the case of conditioning on an event that has 0 probability, belief
should not be (and is not) defined.



Location Estimation: An Example
Action Theory

We build a basic action theory D for a robot in a 2-
dimensional grid. We imagine two fluents h and v in addition
to Poss, l and p. The fluent h gives the distance to the wall
and v gives the position of the robot along the vertical axis.
We consider two physical actions left(z) and up(z), and two
sensing actions sonar(x) and gps(x, y).
D0 includes the following domain-independent axioms:

(∗) and (P1). Specific to the domain, imagine that D0 also
includes the following for p:

p(ι, S0) =

{
.1 × N(v(ι); 0, 16) if 2 ≤ h(ι) ≤ 12
0 otherwise

This says that the value of v is normally distributed about the
horizontal axis with variance 16, and independently, that the
value of h is uniformly distributed between 2 and 12.8 No
other sentence is included inD0.

For simplicity, we assume that actions are always exe-
cutable. Therefore, D will not contain any precondition ax-
ioms.D’s successor state axioms are the following. There is
a fixed one for p, which is (P2). For h, we have:

h(do(a, s)) = u ≡
¬∃z(a = left(z)) ∧ u = h(s) ∨
∃z(a = left(z) ∧ u = max(0, h(s) − z)).

(1)

This says an action left(z) moves the robot z units to the left
(towards the wall) but that the motion stops if the robot hits
the wall. It is also assumed that left(z) is the only action that
affects h. Of course, to move away from the wall, z can be
any negative value. Similarly, for v, we have:

v(do(a, s)) = u ≡
¬∃z(a = up(z)) ∧ u = v(s) ∨
∃z(a = up(z) ∧ u = v(s) + z).

(2)

This captures the upward motion of the robot, while assum-
ing that up(z) is the only action affecting v.

Finally, we specify the likelihood axioms in D. We will
suppose that the sonar unit, which senses h, is quite accurate:

l(sonar(z), s) = u ≡
(z ≥ 0 ∧ u = N(h(s) − z; 0, .25))
∨ (z < 0 ∧ u = 0)

(3)

which stipulates that the difference between a nonnegative
reading of z and the true value h is normally distributed with
a variance of .25 and mean of 0. (A mean of 0 indicates that
there is no systematic bias in the reading.) For the GPS de-
vice, assuming that its absolute readings of latitude and lon-
gitude have been converted to relative readings (Hightower
and Borriello 2001) for h and v, imagine a bivariate Gaussian
error model:

l(gps(x, y), s) =

{
N(h(s) − z, v(s) − y; µ1,Σ) if h(s) ≥ 2
N(h(s) − z, v(s) − y; µ2,Σ) otherwise

where Σ is the 2 × 2 identity matrix, µ1 = [0 0]T and µ2 =
[0 2]T . This says that the components of the Gaussian are

8Initial beliefs can also be specified forD0 using Bel directly.
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do(sonar(5.6), do(sonar(5.3), S0))

Figure 2: Belief density change for h at S0 (in blue), after
sensing 5.3 (in green), and after finally reading 5.6 (in red).

independent, and that there is systematic bias in the reading
for v when the robot is close to the wall (due to a signal
obstructions).

As mentioned earlier, physical actions such as left(z) and
up(z) are assumed to be deterministic for this paper, so they
are given trivial likelihoods:

l(left(z), s) = 1,
l(up(z), s) = 1.

This completes the specification ofD.

Theorem 1: The following are logical entailments ofD:

Initial beliefs
1. Bel(true, S0) = 1.
2. Bel(h = 2 ∨ h = 3 ∨ h = 4, S0) = 0

Although we are integrating a density function q(x1, x2)
over all real values, q(x1, x2) = 0 unless x1 ∈ {2, 3, 4}.

3. Bel(5 ≤ h ≤ 5.5, S0) = .05
We are integrating a function that is 0 except when 5 ≤
x1 ≤ 5.5. This is ∫R ∫

5.5
5 .1 × N(x2; 0, 16) dx1 dx2 = .05.

Sensing by sonar
4. Bel(5 ≤ h ≤ 5.5, do(sonar(5.3), S0)) ≈ .38

Compared to item 3, belief is sharpened significantly by
obtaining a reading of 5.3 on the highly sensitive sonar.
This is because the p function incorporates the likelihood
of a sonar(5.3) action. Starting with the density function
in item 3, the sensor reading multiplies the expression to
be integrated by N(x1 − 5.3; 0, .25), as given by (3). This
amounts to evaluating the expression∫

R

∫
A
.1 × N(x1 − 5.3; 0, .25) × N(x2; 0, 16) dx1 dx2

with A = [5, 5.5] for the numerator, and A = [2, 12] for
the denominator.

5. Bel(4.5 ≤ h ≤ 6.5, do[sonar(5.3), sonar(5.6)], S0) ≈ .99
Two successive readings around 5.5 sharpen belief within
1 unit of 5.5 to almost certainty. Compared to item 4,
the density function is further multiplied by N(x1 −



5.6; 0, .25), and integrated over [2, 12] for the denomina-
tor as usual but over [4.5, 6.5] for the numerator. These
changing densities are shown in Figure 2.

Physical actions
6. Bel(h = 0, do(left(4), S0)) = .2

Here a continuous distribution evolves into a mixed one.
By (1), h = 0 holds after the action iff h ≤ 4 held before.
This results in ∫R ∫

4
2 .1 × N(x2; 0, 16) dx1 dx2 = .2.

7. Bel(h ≤ 5, do(left(4), S0)) = .7
Bel’s definition is amenable to a set of h values, where
one value has a weight of .2, and all the other real values
have a uniformly distributed density of .1. This change in
weights is shown in Figure 3.

8. Bel(h = 4, do([left(4), left(−4)], S0)) = .2
Bel(h = 4, do([left(−4), left(4)], S0)) = 0
The point h = 4 has 0 weight initially (like in item 2).
Moving leftwards first means many points “collapse”, and
so this point (now having h value 0) gets .2 weight which
is retained on moving away. But not vice versa.

9. Bel(−1 ≤ v ≤ 1, do(left(6), S0)) =

Bel(−1 ≤ v ≤ 1, S0) = ∫
1
−1N(x2; 0, 16)dx2 ≈ .19

Owing to Reiter’s solution to the frame problem, belief in
v is unaffected by a lateral motion. For v ∈ [−1, 1] it is the
area between [−1, 1] bounded by the specified Gaussian.

10. Bel(v ≤ 1.5, do(up(3.5), S0)) = Bel(v ≤ −2, S0)
After the action up(3.5), the Gaussian for v’s value has its
mean “shifted” by 3.5 because the density associated with
v = x2 initially is now associated with v = x2 + 3.5.

Sensing by GPS
11. Bel(−1 ≤ v ≤ 1, do(gps(5, .1), S0)) ≈ .27

Compared to item 9, a GPS reading of .1 increases the
posterior belief for v ∈ [−1, 1] to ≈ .27. Using the error
model, this is a result of∫ 12

2

∫
A
.1 · N(x2; 0, 16) · N(x1 − 5, x2 − .1; µ1,Σ) dx2 dx1

with A = [−1, 1] for the numerator and A = [−∞,∞] for
the denominator.9

Competing sensors
12. Bel(5 ≤ h ≤ 5.5, do([gps(5, .1), gps(5.3, .1)], S0)) ≈ .27

Bel(5 ≤ h ≤ 5.5, do([sonar(5.3), gps(5, .1)], S0)) ≈ .42
The sonar is more sensitive than the GPS, and so its read-
ing is far more effective. Relating this to item 4, a GPS
reading of 5 for h only slightly redistributes the density.

Systematic bias
13. h(S0) ≤ 4 ⊃

Bel(−1 ≤ v ≤ 1, do([left(4), gps(1, 0)], S0)) ≈ 0

9This is a simple instance of Kalman filtering (Dean and Well-
man 1991) where the value being sensed is static. Gaussian distri-
butions enjoy the conjugate property: multiplying Gaussians results
in another Gaussian (Box and Tiao 1973), and is easily computed.
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do(left(4), S0)

S0

Figure 3: Belief update for h after physical actions. Initial
belief at S0 (in blue) and after a leftward move by 4 (in red).

After moving left by 4 units, v’s reading from the GPS has
a systematic bias of 2. Among other things, this entails
that the belief in v ≤ 1 is almost 0 which is much weaker
than its prior from item 9.

Nonstandard properties
14. Bel(h > 7v, S0) ≈ .6

Beliefs about any mathematical expression involving the
random variables, even when that does not correspond to
well known density functions, are entailed. In this case,
we are basically evaluating:∫ 12

2

∫ x1/7

−∞

.1 × N(x2; 0, 16) dx2 dx1.

15. Bel([∃a, s. now=do(a, s) ∧ h(s)>1], do(left(4), S0)) = 1.
It is possible to refer to earlier or later situations using
now as the current situation. This says that after moving,
there is full belief that (h > 1) held before the action.

Related Work
Sensor fusion has been a primary concern in state estimation
approaches (Thrun, Burgard, and Fox 2005). Popular mod-
els include variants of Kalman filtering (Fox et al. 2003),
where priors and likelihoods are assumed to be Gaussian.
We already pointed out that entailment item 11 is a simple
instance of Kalman filtering. But in general, our approach
does not make any assumptions about the nature of distri-
butions, nor about how distributions and dependencies may
evolve after actions, and allows for strict uncertainty. This
distinguishes the current method from numerous probabilis-
tic formalisms (Lerner et al. 2002; Dean and Wellman 1991;
Fox et al. 2003), including those that handle explicit ac-
tions (Darwiche and Goldszmidt 1994; Hajishirzi and Amir
2010). To the best of our knowledge, none of these for-
malisms have treated cases where state variables change in
the manner indicated in the paper.

In the rest of the section, we will briefly discuss how the
framework used in the paper is related to existing logical
formalisms for uncertainty. Probabilistic logical formalisms
such as (Halpern 1990; Bacchus 1990) are equipped to
handle disjunctions and quantifiers, but they do not ex-
plicitly address actions. Relational probabilistic languages



and Markov logics (Ng and Subrahmanian 1992; Richard-
son and Domingos 2006) also do not model actions. (Re-
cent temporal extensions, such as (Choi, Guzman-Rivera,
and Amir 2011), specifically treat Kalman filtering, and not
complex actions.) In this regard, action logics such as dy-
namic and process logics are closely related. Recent pro-
posals, for example (Van Benthem, Gerbrandy, and Kooi
2009), treat sensor fusion. However, these and related frame-
works (Halpern and Tuttle 1993), including probabilistic
planning formalisms (Kushmerick, Hanks, and Weld 1995),
are mostly propositional. Proposals based on the situa-
tion and fluent calculi are first-order (Bacchus, Halpern,
and Levesque 1999; Poole 1998; Boutilier et al. 2000;
Mateus et al. 2001; Shapiro 2005; Gabaldon and Lakemeyer
2007; Fritz and McIlraith 2009; Belle and Lakemeyer 2011;
Thielscher 2001), but none of them deal with continuous
sensor noise, and nor do the extensions for continuous pro-
cesses (Reiter 2001; Herrmann and Thielscher 1996). More-
over, none of these deal with the integration of continuous
variables within the language.

Conclusions
This paper illustrates location estimation for a robot operat-
ing in an incompletely known world, equipped with noisy
sensors. In contrast to a number of competing formalisms,
where the modeler is left with the difficult task of decid-
ing how the dependencies and distributions of state vari-
ables might evolve, here one need only specify the initial
beliefs and the physical laws. Suitable posteriors are then en-
tailed. The framework of the situation calculus, and a recent
generalization to the BHL scheme, allows us to additionally
specify situation-specific biases and realistic continuous er-
ror models. Our example demonstrates that belief changes
appropriately even when one is interested in nonstandard
properties, such as logical relationships of state variables,
all of which emerges as a side-effect of the general specifica-
tion. In the future, we intend to consider the more elaborate
case where a robot’s position will include angular orienta-
tion in addition to Cartesian coordinates, and explore state
estimation in this setting. On the more computational side,
we are interested in investigating formal conditions about
action theories that would allow us to estimate posteriors ef-
ficiently under the assumption that priors and likelihoods are
drawn from tractable distributions (Box and Tiao 1973).

Acknowledgements
The authors would like to thank the referees for construc-
tive feedback, and the Natural Sciences and Engineering Re-
search Council of Canada for financial support.

Appendix: Sums and Integrals in Logic
Logical formulas can be used to characterize sums and a va-
riety of sorts of integrals. Here we show the simplest pos-
sible cases: the summing of a one variable function from 1
to n, and the definite integral from −∞ to ∞ of a contin-
uous real-valued function of one variable. Other complica-
tions are treated in a longer version of the paper.

First, sums. For any logical term t and variable i, we in-
troduce the following notation to characterize summations:

n∑
i=1

t = z � ∃ f [ f (1) = ti
1 ∧ f (n) = z ∧

∀j (1 ≤ j < n ⊃ f ( j + 1) = f ( j) + ti
( j+1) )]

where f is assumed to not appear in t, and j is understood to
be chosen not to conflict with any of the variables in t and i.

Now, integrals. We begin by introducing a notation for
limits to positive infinity. For any logical term t and variable
x, we let lim

x→∞
t stand for a term characterized by:

lim
x→∞

t = z � ∀u(u > 0 ⊃ ∃m∀n(n > m ⊃
∣∣∣z − tx

n

∣∣∣ < u)).

The variables u, m, and n are understood to be chosen here
not to conflict with any of the variables in x, t, and z.

Then, for any variable x and terms a, b, and t, we intro-
duce a term INT[x, a, b, t] to stand for the definite integral of
t over x from a to b:

INT[x, a, b, t] � lim
n→∞

h ·
n∑

i=1

tx
(a+h·i)

where h stands for (b − a)/n. The variable n is chosen not to
conflict with any of the other variables.

Finally, we define the definite integral of t over all real
values of x by the following:∫

x
t � lim

u→∞
lim
v→∞

INT[x,−u, v, t].

The main result for this logical abbreviation is the following:

Theorem 2: Let g be a function symbol of L standing for a
function from R to R, and let c be a constant symbol ofL. Let
M be any logical interpretation of L such that the function
gM is continuous everywhere. Then we have the following:

If
∫ ∞

−∞

gM(x) . dx = cM then M |= (c =

∫
x
g(x)).
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