Computing Contingent Plans via Fully Observable Non-Deterministic Planning

Christian Muise and Vaishak Belle and Sheila A. Mcllraith
Department of Computer Science
University of Toronto, Toronto, Canada.
{cjmuise,vaishak,sheila} @cs.toronto.edu

Abstract

Planning with sensing actions under partial observability is
a computationally challenging problem that is fundamental
to the realization of Al tasks in areas as diverse as robotics,
game playing, and diagnostic problem solving. Recent work
on generating plans for partially observable domains has ad-
vocated for online planning, claiming that offline plans are
often too large to generate. Here we push the envelope on
this challenging problem, proposing a technique for generat-
ing conditional (aka contingent) plans offline. The key to our
planner’s success is the reliance on state-of-the-art techniques
for fully observable non-deterministic (FOND) planning. In
particular, we use an existing compilation for converting a
planning problem under partial observability and sensing to
a FOND planning problem. With a modified FOND planner
in hand, we are able to scale beyond previous techniques for
generating conditional plans with solutions that are orders of
magnitude smaller than previously possible in some domains.

1 Introduction

An agent planning to achieve a goal in a partially observ-
able environment with sensing actions (PPOS) has the op-
tion of choosing how to act online by interleaving planning,
sensing, and acting; or choosing how to act offline by gener-
ating a plan with decision points predicated on sensing out-
comes. In this paper we investigate the latter. In particular,
we examine the problem of generating conditional plans for
planning problems with incomplete information about the
initial state, deterministic actions, and sensing actions. In
this work, we use the terms “offline planning” and “condi-
tional planning” interchangeably to always refer to the of-
fline generation of contingent plans; the online variant will
be referred to as “online contingent planning.” Our focus
here is on a particular class of problems where the initial
state specification includes a set of state constraints called
state invariants. These are commonly used to model the be-
haviour of a device, or physical environments with which
the agent is interacting. We further assume that uncertainty
decreases monotonically, i.e. once a property of the world is
known, it can change but cannot become unknown again.
There are merits and shortcomings to both online and of-
fline planning in this context. Online contingent plans are

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

generally easier to compute since integrating online sensing
with planning eliminates the need to plan for a potentially
exponential (in the size of relevant unknown facts) number
of contingencies. In the absence of deadends, online contin-
gent planning can be fast and effective. Recent advances in-
clude CLG and CLG+ (Albore, Palacios, and Geffner 2009;
Albore and Geffner 2009), K-Planner (Bonet and Geffner
2011), and SDR (Brafman and Shani 2012).

In contrast, planning offline constructs conditional plans
with decision points for sensing outcomes and guarantees
that the goal will be achieved if it is possible to do so.
The plan is larger than an online plan but has the merit
that it is generalized to deal with alternative sensing out-
comes. Indeed plan existence for conditional planning is
2-EXP-complete (Rintanen 2004; Baral, Kreinovich, and
Trejo 2000). More importantly, because offline planners
are able to search and deliberate, they have the capacity to
avoid deadends, and also to support the generation of op-
timized high quality plans. Some early conditional plan-
ners were based on partial order planning (e.g., CNLP (Peot
and Smith 1992), Cassandra (Pryor and Collins 1996)) and
Graphplan (e.g., SGP (Weld, Anderson, and Smith 1998)).
MBP (Bertoli et al. 2001) and BBSP (Rintanen 2004) are
more recent BDD-based model checking planners. Plan-
ners based on heuristic search include Contingent-FF (Hoft-
mann and Brafman 2005), POND (Bryce, Kambhampati,
and Smith 2006), and most recently CLG which has an of-
fline variant (Albore, Palacios, and Geffner 2009). Finally,
the conditional plan we consider is similar to the “execution
structure” of Kuter et al.’s “conditionalized plan” (2007), but
differs in construction and generality of what the plan repre-
sents. Experimental results reported in the literature appear
to indicate that CLG represents the state of the art in terms
of scalability of offline conditional planning.

In this paper we present PO-PRP, a conditional planner.
PO-PRP plans achieve the goal for all consistent sequences
of observations for which a solution exists. The key to
our planner’s success is its reliance on state-of-the-art tech-
niques for fully observable non-deterministic (FOND) plan-
ning. In particular, we use an existing compilation by Bonet
and Geftner (Bonet and Geftner 2011) (henceforth BG) for
converting a PPOS problem to a FOND planning problem.
All actions are treated as deterministic with the exception
of sensing actions, which are encoded as non-deterministic

actions. We then modify a state-of-the-art FOND planner,
PRP (Muise, Mcllraith, and Beck 2012), to compute strong
cyclic plans in the form of policies, which we roll-out into
plans represented as DAGs. We address a number of criti-
cal challenges, leading to a conditional planner that is able
to scale beyond previous techniques for offline planning and
that is able to compute solutions that are orders of magnitude
smaller than state-of-the-art CLG in some domains.

2 Contingent Planning via FOND Planning

In this section, we formulate the PPOS problem, and then
review the translation of PPOS problems to FOND ones.

Syntax and Interpretation. Following BG, we specify
the problem in a STRIPS-like language, where actions can
additionally have conditional effects. Formally, a PPOS do-
main is a tuple P = (F, A, O,Z,G), where F is the set of
fluent atoms, A is the set of actions, O is the set of observa-
tions, Z is a set of clauses over F that determines the initial
state, and G is a conjunction of atoms over F determining
the goal condition. The specification is interpreted over a
set of (world) states, which are essentially truth valuations
to the atoms in F. We say a literal [holds in a state s iff
s assigns [to be true. This is extended for connectives in
an obvious way. In particular, since 7 is a set of clauses, Z
would hold in a number of states; the belief state b is the set
of all (world) states where Z holds. By extension, we say a
formula a holds in b iff @ holds in every state s € b.

For a € A, we let PrRe(a) be a conjunction of atoms to
denote its preconditions, and Err(a) be a set of pairs (c,[)
to capture its conditional effects. Observations o € O are
of the form (c, /) with the understanding that when c is true,
o informs the agent about the truth of /. In practice, this is
achieved by treating observations o as a separate category of
actions which have c as the precondition, and / as the effect.!
We say an action a is applicable in s iff Pre(a) holds in s.
Analogously, we say a is applicable in b iff a is applicable
in every s € b. On performing a in b, a successor belief
state b’ is defined by performing « in each s € b. On per-
forming an observation o = {(c, /) in b, the successor belief
state b’ is the maximal set of states in b agreeing on [. By
extension, a sequence agp-a; - - - di, possibly involving obser-
vations, is applicable in b if ay is applicable in b, resulting in
a successor belief state by, and inductively, a; is applicable
in b;, ultimately resulting in by. A belief state b’ is said to be
reachable from b if there is some sequence of actions and
observations that when applied to b results in '.

Solutions. Generally with PPOS problems, a solution is
rarely a simple sequence of actions, because the agent may
need to perform a number of sensing actions to determine
aspects of the world based on which further actions can be
taken. Therefore, a solution to a PPOS problem is a policy
IT that is best viewed as a branching structure, usually called

!Our sensor model differs slightly from BG in that they assume
sensing actions are triggered as soon as the preconditions hold. Our
planner, on the other hand, chooses to apply sensing actions when
needed, just like ordinary physical actions.

sensor-edge-obs v0 0 sensor -obs0

’k traversable e0

move-along vO vl e0
sensor-edge-obs vl e3 sensor -obs0

’ k traversable e3

opetoms 12> movetons 2

Figure 1: Example solution to the CTP. Circles represent the ac-
tion to take or observation to be made while boxes contain edge
labels indicating the sensing outcome that has occurred.

’ k not traversable e0

’ k not traversable e3

a conditional plan, induced by the outcomes of sensing ac-
tions (Geftner and Bonet 2013). Equivalently, one may view
IT as a partial function from belief states to actions (Geftner
and Bonet 2013). Such a function would then advise the
subsequent action to be taken based on the actual observa-
tion. Finally, we say that IT solves the PPOS problem P iff
the executions advised by II are applicable in the belief state
b for P, and they result in belief states b* where the goal
condition G holds.

While conditional plans are usually trees, in this work we
reduce the redundancy by representing many belief states as
a single node in a DAG. Crucially, a node may correspond
to a partial belief state, capturing many configurations of the
agent’s belief. As an example PPOS problem, consider the
Canadian Traveller’s Problem (CTP) where an agent must
navigate a city with roads that may or may not be traversable
(due to large amounts of snow fall). Sensing the status of a
road can only be done when the agent is adjacent to it. If we
consider the class of maps that have a pair of roads between
every two adjacent locations in a chain, exactly one of which
is traversable, then an obvious strategy presents itself: sense
one of the two roads that leads to the next location; if it is
traversable then take it; otherwise take the other road. Naive
solutions to the problem are exponential in size (every new
location has a new choice of two roads), but in this work we
strive to generate plans such as in Figure 1.

Compiling Away Uncertainty. Computing successor be-
lief states b’, often called belief tracking, is non-trivial.
Note, for example, that applying actions and observations
over all world states (as needed for obtaining b) is clearly
exponential in |F|. In recent work, belief tracking is shown
to be tractable against the contingent width of a PPOS prob-
lem, which is claimed to typically be small for most real-
world domains (Albore, Palacios, and Geffner 2009). Thus,
it follows that for many interesting domains, belief track-
ing is quadratic in |F|. Nonetheless, even a quadratic fac-

tor is computationally challenging in large domains. A sec-
ond key result is that a PPOS problem can be translated into
a FOND one (Albore, Palacios, and Geffner 2009). This
supports the exploitation of state-of-the-art heuristic search
techniques for classical planning. Of course, the quadratic
belief tracking problem has a natural analogue in the trans-
lation, and so computational issues persists.

Interestingly, BG show that when we further restrict our-
selves to the so-called simple PPOS problems, belief track-
ing is linear in |F|. Informally, simple problems are mo-
tivated by the observation that many domains can be char-
acterized by state invariants, and actions typically do not
depend on fluents whose values are unknown. In precise
terms, invariant clauses are clauses that hold in every world
state (Helmert 2009), and often represent multivalued func-
tional fluents. The second assumption in simple problems is
that the body of conditional effects cannot mention hidden
literals, that is, literals / such that Z | [and Z £ —I. Hidden
literals, however, may appear in the preconditions of actions
and may also appear in the effects of actions. Following BG,
we have:

Definition 1. (Simple PPOS Problems.) A PPOS problem
P =(F,A 0,Z,G) is simple if the non-unary clauses in Z
are invariant, and no hidden fluent appears in the body of a
conditional effect.

Most significantly, features of simple problems include:

o Effective Characterization: Suppose Z* are the non-
unary clauses in Z and b is the belief state for Z in P. If
b* is reachable from b and the literals in S are known to
hold in b*, then b* is completely characterized by Z* U S.

e Monotonicity: Suppose b’ is reachable from b and [is
known in b’. If b” is reachable from &’, then [is also
known in b”.

From PPOS to FOND. Adapting the work of BG, we now
present a translation from simple PPOS problems to FOND
ones, where the non-deterministic actions are from the sen-
sor model. The main idea is to replace every literal / with
fluent atoms KI and K-/, which denotes knowing that [is
true vs. false.

Definition 2. Suppose P = (F, A 0,Z,G) is a simple
PPOS problem. We define K'(P) = (F,A',Z',G’) as a
fully-observable non-deterministic planning problem where
1. 7' = Ujer {KL K1}

2. A’is the set of actions A’ U A}, U A7, where,

(a) A’ forevery a € A, there is an action @’ € A’, such
that if / € Pre(a) then KI € Pre(d’), and if (c,l) €
Err(a) then {(Kc¢, Kl), (~K—c,—~K—-l)} C Err(a’);

(b) Aj,: for o = (c,I) € O, there is an action a’ € A,
such that Pre(a’) = Kc A =KI A =K =l with two possi-
ble non-deterministic effects, Erry(a’) = {(T,Kl)} and
Erry(a’) = {(T,K-I) };

(c) Aj,: forevery (c D 1) € T, there is an action a’ € A,
such that Pre(a’) = K¢ and Err(a’) = {(T,KI)};

3. 77 ={Kl|l€Z};and
4. ¢ ={Kl|l€G};

‘We use the notation K¢ and —K—c whenc =[{ A... \N[; to
mean (Kl A ... A Kly) and (mK—-Il; A ... AN ~K~l) respec-
tively. The key differences between Definition 2 and BG are
that (1) we use =K/ A =Kl as part of the precondition for
a sensing action and (2) we assume that the agent is free
to choose when a sensing action occurs. The former helps
avoid inconsistent beliefs during search, and the latter is a
restriction that can be removed easily if so desired.

The intuition is this: since unary clauses in Z are clearly
known, we index K to these literals in Z; A;, then, rep-
resents the invariants in Z. A’, determines when the agent
would know the effect of an action. Sensing actions are
the only non-deterministic actions in the translated FOND
problem, and these indicate that at execution time, the agent
would either come to know that the literal is true or would
come to know that the literal is false. In practice, on per-
forming such a non-deterministic action, we will be track-
ing two possible successors for a world state corresponding
to each outcome. Finally, the goal state is one where every
literal in the original goal G is known to be true.

Analogous to the notion of a policy IT at the level of be-
lief, the solution to a FOND problem is a policy (i.e. a partial
function) IT' that maps (world) states to actions. Applicabil-
ity and goal reachability are defined for the FOND problem
also in an analogous manner. Finally, the translation is jus-
tified by means of a soundness and completeness result by
BG: a policy IT’ obtained for K’(P) can be converted to a
policy IT for P, and vice versa.

3 Approach

The modified BG translation described in Section 2 provides
a FOND encoding of our PPOS planning problem, K'(P),
in which sensing actions are encoded as non-deterministic
actions. Our planner, PO-PRP, leverages state-of-the-art
FOND planner PRP (Muise, Mcllraith, and Beck 2012), ex-
tended with conditional effects (Muise, Mcllraith, and Belle
2014) and is modified to address three critical challenges for
dealing with PPOS problems. FOND planners are gener-
ally predicated on an assumption of fairness — if an action is
executed infinitely many times, every non-deterministic out-
come will occur infinitely often (Cimatti et al. 2003). A key
challenge was addressing the fundamental violation of fair-
ness by sensing actions. A second challenge was to suitably
handle the computation of indirect effects of actions (ram-
ifications) resulting from the state invariants. A third criti-
cal element was leveraging a technique used in PRP, strong
cyclic detection, to produce compact conditional plans.

3.1 From PRP to PO-PRP

We review and elaborate upon key elements of PRP that are
essential to PO-PRP, with particular focus on one aspect of
the planner referred to as strong cyclic detection (SCD). Our
interest in the SCD procedure of PRP stems from the fact
that we can leverage it for computing a compact conditional
plan given the policy PO-PRP generates (cf. Section 3.4).

Problem Specification. PO-PRP takes as input a simple
PPOS problem P and outputs a conditional plan. The first

step of PO-PRP is to apply the augmented BG translation de-
scribed in Section 2 to P, generating the associated FOND
problem K’(P). From this point, the problem specification is
identical to that of PRP, which can be found in (Muise, Mcll-
raith, and Beck 2012). The details are not necessary to the
results that follow. The translated planning problem K’(P) is
input as a PDDL file to PO-PRP, which uses the SAS™ rep-
resentation (Helmert 2009). A significant property of PRP
(likewise PO-PRP), is that states are represented as partial
states — a subset of literals that is interpreted as a conjunc-
tive formula, compactly representing a family of states. We
exploit this compact representation to generate small-sized
conditional plans (cf. Section 3.4).

General Approach. Cimatti et al. (2003) identify three
types of plans for FOND problems: weak, strong, and strong
cyclic. Intuitively, a weak plan corresponds to an “optimistic
plan” that reaches the goal under at least one possible set of
action outcomes of the actions in the plan. A strong plan cor-
responds to a “safe plan” and is a closed policy that achieves
the goal in a finite number of steps while never visiting the
same state twice. Often, however, weak plans are not accept-
able and strong plans do not exist. As a viable alternative,
a strong cyclic plan is a closed policy with the property that
every reachable state will eventually reach the goal via the
policy under an assumption of fairness.

PRP creates a strong cyclic plan in the form of a policy
that maps states to actions. The representation of this pol-
icy, however, is non-standard. Rather than storing an explicit
mapping of complete states to actions, PRP creates a set of
condition-action pairs P, each of the form (p,a) € P with p
a partial state. In order to return a unique action for a given
state s, there is a total ordering over the pairs that allows
us to use P and simply return the action in the “most pre-
ferred” pair (p, a) such that s |= p (ordered, for example wrt
distance from goal). We will use P(s) to designate the pair
that is most preferred, and we say that P handles state s if P
returns some pair. PRP’s core algorithm is as follows:

1. Let Open = {so} and Cls = {);
2. Select and move a state s from Open to Cls such that,
(i) If P(s) = L, compute a classical plan for s and aug-
ment the policy with the result

(ii) If P(s) = (p,a) and a € Ap, add to Open the states
{Prog(s, a, Brri(a)), Prog(s,a, EFry(a))} \ Cls;?

(iii) If P(s) = (p,a) and a ¢ Ap, add to Open the state
Prog(s,a,Err(a)) if it is not in Cls;

@iv) If P(s) = L, process s as a deadend;

3. If Open is empty, return P. Else, repeat from step 2;

Note that step 2(i) is essentially computing a weak plan by
way of solving a classical planning problem. In Section
3.3, we describe more precisely how this search procedure
is modified to incorporate indirect effects of actions (ramifi-
cations) found in the translated PPOS problem:s.

2Prog(s, a, €) is the progression of s wrt a’s effect e and is de-
fined as usual for planning with conditional effects (Reiter 2001).

The PRP planner has a number of components (described
in (Muise et al., 2012)) that are key to the success of PO-
PRP, including (1) deadend detection, generalization, and
avoidance, (2) stopping conditions for weak plans, and (3)
conditions for terminating the simulation of action effects
(replacing steps 2(ii) and 2(iii)). It is this final phase that we
discuss below.

Strong Cyclic Detection. PRP has the facility to “mark”
certain pairs in the policy P to indicate that if (p,a) is
marked, then P is a strong cyclic plan for every state s where
P(s) = (p,a). This feature allows PRP to forgo steps 2(ii)
and 2(iii) if the pair is marked — instead of expanding the
state with every possible outcome, the state s is considered
handled completely and the process continues. While re-
producing the full strong cyclic detection (SCD) procedure
is beyond the scope of this paper, later we do rely on one
aspect of SCD for the export of conditional plans.

PRP will only allow (p, a) to be marked if P is guaranteed
to return a marked pair P(s") = (p’, a’) for every state s’ that
could be reached by the pair (p,). In other words, we have
the following property (following Definition 7 and Theorem
3 of (Muise, Mcllraith, and Beck 2012)):

Proposition 1. The SCD procedure of PRP ensures that a
pair (p,a) of policy P is marked only if for every state s
such that P(s) = (p,a) and every non-deterministic effect
Err of action a, the pair P(Prog(s,a, Err(a))) = (p’,d’) is
marked or p’ is a goal.

3.2 Violating Fairness with Sensing Actions

Following Cimatti et al. (2003), solutions to non-
deterministic planning problems typically rely on an as-
sumption of fairness with respect to non-deterministic ac-
tions: if an agent executes a non-deterministic action in-
finitely many times, every one of its outcomes will occur
infinitely often. Unfortunately, in our current PPOS prob-
lems, the only non-deterministic actions are sensing actions
and they are decidedly unfair. The outcome of a sensing
action will reflect the state of the world, which is unchang-
ing unless changed by an action. Fortunately, since we as-
sume that the state of the world only changes as the result of
the actions of the plan (i.e., there are no exogenous actions)
then once a fluent has been sensed, the planner should not
be compelled to execute the sensing action again because
the value of the fluent is known.

This is realized by our problem encoding, K’(P), together
with the assumption of monotonicity of knowledge. Recall
that a precondition of any sense action is that the outcome is
currently not known and the effect is that one of the literal
or its negation is known, violating the precondition for the
sense action to be executed again. This together with mono-
tonicity ensures that a particular ground sensing action can
only ever be executed at most once during online execution.
As a result, the space of solutions to the FOND planning
problem, and subsequently the space of conditional plans,
will never contain a cycle with a sensing action. This key
property allows us to preserve the properties of our FOND
planner, despite the inherent unfairness of sensing actions.

3.3 Computing Ramifications

When state invariants or state constraints are combined with
an action theory, they result in indirect effects of actions —
further consequences of an action that result from enforc-
ing the truth of the state invariants. Understanding what
effects should be generated and how is an instance of the
ramification problem, a well-studied problem in Knowledge
Representation (KR). A variety of solutions have been pro-
posed for dealing with this issue, including compilation of
these indirect effects or ramifications into further direct ef-
fects of actions, representing indirect effects as actions that
are triggered by states, representing indirect effects as fur-
ther axioms or derived predicates, etc. (e.g., (Pinto 1999;
Mcllraith and Scherl 2000; Strass and Thielscher 2013)).

Our BG inspired encoding, K’(P), captures these indi-
rect effects as a distinguished set of so-called invariant ac-
tions, Af,. Intuitively, following the execution of a regular
action, these invariant actions should be executed as book-
keeping actions to compute all indirect effects of the action.
Unfortunately, if left unconstrained, this can lead to exten-
sive wasted search effort in parts of the state space that will
never be reached during execution, as well as the discovery
of meaningless deadends that PO-PRP will try to avoid.

We elected to continue to compute the effects of invariants
via the application of actions so that the heuristics PO-PRP
uses to compute a weak plan would inform the computation
of ramifications. Further, PRP’s/PO-PRP’s use of regres-
sion to compute condition-action pairs would become pro-
hibitively complex were we instead to compile the ramifica-
tions into extra effects of actions. Inspired by KR research
on the ramification problem, we modified the search proce-
dure of PO-PRP to compute the indirect effects of actions by
applying invariant actions at every node in the search until
quiescence. That is, until no more invariant actions are ap-
plicable. To avoid state explosion, we enforce an arbitrary
ordering over the application of invariant actions. Given the
existing restrictions for simple domains, enforcing the order
does not alter the state that the planner reaches once there are
no more applicable invariant actions. This is because there is
a unique interpretation in these simple domains, and because
knowledge is assumed to accumulate monotonically.

3.4 Exporting a Conditional Plan

Like PRP, PO-PRP produces a policy in the form of
condition-action pairs, which, in principle, could be used if
the belief of the agent is maintained in its compiled form.
Since this cannot be guaranteed, we convert the policy into
a form more traditionally used for PPOS solutions: a con-
ditional plan. The policy quite often will be far smaller
than the conditional plan it implicitly represents, but there
is merit to producing one: it helps in verifying PO-PRP’s
final solution, and it provides a plan in a form suitable for
execution by an agent that does not maintain its belief in a
compiled form (e.g., a simple controller).

While conditional plans are typically tree structures, PO-
PRP conditional plans are constructed more compactly as
DAGs. Nodes in the DAG correspond to either actions
drawn from A;‘, or decision points — sensing actions drawn

from A, whose outgoing edges denote the possible obser-
vations. There are three additional distinguished node types:
a single source node denoting the first action of the plan,
deadend nodes where no plan exists, and goal nodes.

To convert PO-PRP’s policy P to a conditional plan, we
use an approach that essentially simulates P on every pos-
sible action outcome. Whenever we see a repeated state,
we need not continue expanding the conditional plan. Intu-
itively, the procedure is as follows:

1. Let Open = {50}, Cls = 0, and (N, E) = ({s0},0);
2. Select and move a state s from Open to Cls such that,

() Let P(s) = (p,a) and if a € A}, let Succ =
{Prog(s, a, Erri(a)), Prog(s, a, EFfy(a))} (otherwise
let Succ = {Prog(s,a, Err(a))});

(ii) Add Succ\ Cls to N and Open;

(iii) Add (s, s’) to E for every s’ in Succ;

3. If Open is empty, return (N, E). Else repeat from 2.

We further modify the DAG (N, E) so that every state s € N
is labelled with the action a from the pair P(s) = (p,a), and
every exit edge from a state labelled with an action a € A,
is labelled with the appropriate observation outcome. Addi-
tionally, we reduce the graph by merging any state labelled
with an invariant action into its successor.

The similarity to PRP’s general approach (described
above) is not coincidental: both approaches operate by enu-
merating the reachable states of P. To avoid a full state ex-
plosion of reachable states we can appeal to PO-PRP’s SCD
procedure and create a more compact conditional plan. The
key is to replace every state Prog(s,a, EFF;(a)) in Succ on
line 2(i) with p whenever P(Prog(s,a,Err;(a))) = (p,a) is
marked as strong cyclic. This means that the closed list Cls
will contain both complete and partial states of the FOND
encoding, K'(P). The partial states p contain only the rel-
evant information for a strong cyclic solution to exist with
P, and this allows us to reuse parts of the conditional plan
for all states s such that P(s) = (p,a). As an example, con-
sider the CTP problem from earlier. The states computed on
the modified line 2(i) would be partial states that retain the
belief about future roads, but forgo knowledge about roads
observed in the past. In this way, the agent can use the same
conditional plan regardless of how it has travelled so far.

Theorem 1. Given a simple PPOS problem P, the condi-
tional plan produced by PO-PRP is sound.

This follows from Proposition 1 and the soundness and
completeness of the BG translation from P to K'(P); the
soundness of the partial policy produced by PO-PRP with re-
spect to the class of FOND problems represented by K'(P);
and by the correctness of the transformation of the partial
policy with respect to K’(P) into a compact conditional plan
with respect to the original PPOS problem.

Theorem 2. Given a simple PPOS problem P, PO-PRP will
return a conditional plan if one exists.

This similarly follows from the soundness and complete-
ness of the BG translation of P into a FOND problem, to-
gether with the property, inherited from PRP, that if a strong
cyclic solution exists for K’(P), then PO-PRP will compute
it and export it as a conditional plan with respect to P.

Problem Time (seconds) Size (actions + sensing) PO-PRP Policy Size
CLG | PO-PRP~ [PO-PRP | CLG | PO-PRP~ | PO-PRP || all | strong | used
cballs-4-1 0.20 0.03 0.02 343 365 261 150 24 125
cballs-4-2 19.86 0.6 0.67 22354 18643 13887 812 46 507
cballs-4-3 1693.02 87.03 171.28 1247512 | 899442 671988 3753 81 1689
cballs-10-1 211.66 1.63 1.57 4829 5096 4170 1139 20 815
cballs-10-2 T M M T M M - - -
ctp-ch-1 0.00 0.00 0.00 5 5 4 10 10 9
ctp-ch-5 0.02 0.01 0.00 125 125 16 52 52 37
ctp-ch-10 2.2 0.08 0.02 4093 4093 31 131 127 72
ctp-ch-15 133.24 2.79 0.07 131069 131069 46 233 227 107
ctp-ch-20 T M 0.22 T M 61 361 352 142
doors-5 0.12 0.00 0.01 169 174 82 55 18 55
doors-7 3.50 0.04 0.04 2492 2603 1295 123 16 114
doors-9 187.60 1.07 1.07 50961 53942 28442 194 16 182
doors-11 T M M T M M - - -
wumpus-5 0.44 0.14 0.16 854 441 233 706 160 331
wumpus-7 9.28 1.14 1.54 7423 1428 770 2974 241 992
wumpus-10 || 1379.62 7.56 11.17 362615 4693 2669 8122 281 | 2482
wumpus-15 T 51.06 86.16 T 25775 15628 21342 | 304 | 8241
wumpus-20 T M M T M M - - -

Table 1: Comparing compilation time and conditional plan size for CLG and PO-PRP. Also listed are statistics on the size of
policy PO-PRP generates. Bold represents the best performance, while T and M represent time limit or memory exceeded.

4 Evaluation

We compared PO-PRP with the state of the art in offline
conditional planning, CLG (Albore, Palacios, and Geffner
2009), to assess both the efficiency of the solving process
and succinctness of the generated plans. We measure the ef-
ficiency in terms of the time it takes to compute a complete
solution, and the succinctness in terms of the generated con-
ditional plan. All experiments were conducted on a Linux
desktop with a 3.4GHz processor, with time / memory lim-
its of 1hr / 2GB respectively. The times listed here do not
include parsing, but this portion of the solving process never
exceeded 3 seconds in the problems tested.’

We consider four domains that fall under the category of
simple domains with partial observability and sensing ac-
tions: Coloured Balls (cballs), Canadian Traveller’s Problem
(ctp-ch), Doors (doors), and Wumpus World (wumpus). The
cballs domain involves navigating a known maze to sense for
coloured balls and placing them in the correct bin (there is
uncertainty in the ball locations and the colour of the balls).
The ctp-ch is the variant of the Canadian Traveller’s Prob-
lem introduced earlier in the paper where the map consists
of a chain of locations connected with a pair of roads (one
of which is safe to travel on). The doors domain requires the
agent to find the unknown position of a door in a long wall
before moving on to another wall. Finally, the classic wum-
pus domain requires the agent to navigate through a maze of

3The conversion to SAS* rarely created multi-valued variables;
so we restricted the invariant synthesis of the parser to 3 seconds.

wumpus monsters and pits (which can be sensed in a neigh-
bouring location) in order to retrieve a bag of gold. Aside
from ctp-ch, we retrieved all problems from the benchmark
set that is included with the online contingent planner of BG,
K-Planner (Bonet and Geffner 2011).* All problems, exam-
ple plans, and PO-PRP source is available online at,

http://www.haz.ca/research/poprp/

When measuring the size of the conditional plan, we ad-
ditionally considered the size of the conditional plan that
is produced when we disable the SCD procedure. In such
cases, the conditional plan is almost always a tree, as every
belief state reachable by the policy is distinct. We use PO-
PRP~ to designate the use of PO-PRP with SCD disabled
when exporting the conditional plan.

To further assess the succinctness of the partial policy that
PO-PRP generates, we include the size of the policy prior to
computing the conditional plan. Recall that the policy PO-
PRP produces is a mapping of partial belief states to an ac-
tion — it thus has the potential to be far more compact than
a traditional mapping from belief states to actions. Addi-
tionally, we list the number of pairs in the policy that were
marked as strong cyclic as well as the number of pairs that
were used during the construction of the conditional plan.

Table 1 shows the results for a selection of problems from
the four domains considered here. The sizes reported for
CLG differ from the original published results, as we include
the number of branching points (i.e., sensing actions) in our

4https ://code.google.com/p/cp2fsc-and-replanner/

calculation. Invariant actions are suppressed from the con-
ditional plan for both CLG and PO-PRP, and they do not
appear in the totals. For the ‘Policy Size’ column, all refers
to the full policy size (i.e., the number of condition-action
pairs), strong refers to the number of pairs marked strong
cyclic, and used refers to those pairs that were used in gen-
erating the conditional plan with PO-PRP. The used column
is almost identical for PO-PRP~, and is thus omitted.

We found that PO-PRP consistently outperformed CLG
in both time to compute a solution and in the size of the final
conditional plan. For some domains the size is comparable
(e.g., doors and cballs), but the runtime shows a dramatic im-
provement. This is due in large part to the generalized policy
that PRP produces internally, which is used to enumerate the
reachable belief states. CLG, in contrast, must continually
recompute a weak plan for every new belief state.

The improvement in conditional plan size for PO-PRP
over CLG is promising, and it is even more striking when
we consider the representation size of the policy. The policy
is not smaller than the conditional plan in every case (see
for example ctp-ch and wumpus domains), but the policy
can be smaller than the conditional plan produced by orders
of magnitude. The conditional plan is much more succinct
when many of the pairs in the policy are marked as strong
cyclic because of the approach we use to compile the con-
ditional plan (cf. Section 3.4). This is most evident in the
ctp-ch domain where PO-PRP is able to compute the optimal
conditional plan very quickly.

We conclude by noting the potential for further improve-
ment. The SCD procedure of PRP, and subsequently PO-
PRP, is merely a sufficient condition. With stronger tech-
niques to mark more of the policy as strong cyclic, we expect
the conditional plans produced to be more compact. Addi-
tionally, the difference between the all and used columns
gives an indication of the amount of redundant or unneces-
sary information in the policy. This suggests room for im-
provement in the final policy that PO-PRP produces.

5 Concluding Remarks

Planning under partially observability is a computation-
ally challenging problem applicable to a number of Al en-
deavours. We focused on solving a compelling class of
PPOS problems where the initial state specification includes
a set of state constraints and where uncertainty about the
state monotonically decreases. We demonstrated how PPOS
problems can be solved offline by exploiting and extending
a modern FOND planner. In contrast to the commonly held
belief that offline planning for PPOS is impractical, PO-PRP
can produce conditional plans several orders of magnitude
faster and smaller than the best planners. In our view, offline
planners come with significant advantages, such as deadend
detection, which is critical in certain settings. Our contribu-
tion includes novel techniques for solving PPOS problems
and producing a compact plan; it opens the door to a new
variety of offline planning techniques.

There are many avenues for future work, including gen-
eralizing the framework to effectively handle a larger class
of problems, and characterizing problems that can be given
succinct policy representations (e.g. the ctp-ch domain).

Acknowledgements

We gratefully acknowledge funding from the Ontario Min-
istry of Innovation and the Natural Sciences and Engineering
Research Council of Canada. We also would like to thank
the anonymous reviewers for their insightful feedback, and
Blai Bonet for making the source of K-Planner both publicly
available and straightforward to use / extend.

References

Albore, A., and Geffner, H. 2009. Acting in partially ob-
servable environments when achievement of the goal cannot
be guaranteed. In ICAPS Workshop on Planning and Plan
Execution for Real-World Systems.

Albore, A.; Palacios, H.; and Geftner, H. 2009. A
translation-based approach to contingent planning. In 2/st
International Joint Conference on Artificial Intelligence (1J-
CAI), 1623-1628.

Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness. Artificial Intelligence
122(1-2):241-267.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observ-
ability via symbolic model checking. In 17th International
Joint Conference on Artificial Intelligence (IJCAI), volume
2001, 473-478.

Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In 22nd International Joint Conference on Artificial Intelli-
gence (IJCAI), 1936-1941.

Brafman, R. I., and Shani, G. 2012. Replanning in domains
with partial information and sensing actions. Journal of Ar-
tificial Intelligence Research 45:565-600.

Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. Journal of Ar-
tificial Intelligence Research 26:35-99.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artificial Intelligence 147(1):35-84.

Geftner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan and
Claypool Publishers.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503-535.

Hoffmann, J., and Brafman, R. I. 2005. Contingent planning
via heuristic forward search witn implicit belief states. In

15th International Conference on Automated Planning and
Scheduling (ICAPS), 71-80.

Kuter, U.; Nau, D.; Reisner, E.; and Goldman, R. 2007.
Conditionalization: Adapting forward-chaining planners
to partially observable environments. In ICAPS 2007—
workshop on planning and execution for real-world systems.

Mcllraith, S., and Scherl, R. B. 2000. What sensing tells us:
Towards a formal theory of testing for dynamical systems. In

17th National Conference on Artificial Intelligence(AAAI),
483-490.

Muise, C.; Mcllraith, S. A.; and Beck, J. C. 2012. Improved
Non-Deterministic Planning by Exploiting State Relevance.
In 22nd International Conference on Automated Planning
and Scheduling (ICAPS), The 22nd International Confer-
ence on Automated Planning and Scheduling.

Muise, C.; Mcllraith, S.; and Belle, V. 2014. Non-
deterministic planning with conditional effects. In 24th
International Conference on Automated Planning and
Scheduling.

Peot, M., and Smith, D. 1992. Conditional nonlinear
planning. In International Conference on Al Planning and
Scheduling (AIPS), 189—-197.

Pinto, J. 1999. Compiling ramification constraints into effect
axioms. Computational Intelligence 15:280-307.

Pryor, L., and Collins, G. 1996. Planning for contingencies:
A decision-based approach. Journal of Artificial Intelligence
Research 4:287-339.

Reiter, R. 2001. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. The
MIT Press.

Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In /4th International Conference on Automated
Planning and Scheduling (ICAPS), 345-354.

Strass, H., and Thielscher, M. 2013. A general first-order
solution to the ramification problem with cycles. Journal of
Applied Logic 11(3):289-308.

Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending graphplan to handle uncertainty and sensing ac-

tions. In 15th National Conference on Artificial intelligence
(AAAI), 897-904.

